Math, asked by Shreyakangle, 1 day ago

what is d(0, Q) if d(OM)= 6cm?​

Attachments:

Answers

Answered by armygirl997
0

Answer:

11

Step-by-step explanation:

because oq is hypotenuse it has higher value so I thought may be 11

mark me as brainliest pls

Answered by matergourav07
0

 {\underline{\underline{\purple{\bold{Given:-}}}}}Given:−</p><p></p><p>In a adjoining figure , O is the centre of a circle with radius 6 cm.</p><p></p><p>A is any point outside the circle and AT is a tangent of the circle .</p><p></p><p>AO = 10 cm</p><p></p><p>★ {\underline{\underline{\purple{\bold{To\:find:-}}}}}Tofind:−</p><p></p><p>Length of the tangent AT .</p><p></p><p>★ {\underline{\underline{\purple{\bold{Solution:-}}}}}Solution:−</p><p></p><p>In the adjoining figure,</p><p></p><p>Radius ( OT) = 6 cm</p><p></p><p>OA = 10 cm</p><p></p><p>AT is the tangent of the circle .</p><p></p><p>OT _|_ AT</p><p></p><p>∆ ATO is a right triangle .</p><p></p><p>Now, apply 'Pythagoras Theorem' :-</p><p></p><p>\implies\sf{AT^2+OT^2=AO^2}⟹AT2+OT2=AO2</p><p></p><p>\implies\sf{AT^2+(6)^2=10^2}⟹AT2+(6)2=102</p><p></p><p>\implies\sf{AT^2+36=100}⟹AT2+36=100</p><p></p><p>\implies\sf{AT^2=100-36}⟹AT2=100−36</p><p></p><p>\implies\sf{AT^2=64}⟹AT2=64</p><p></p><p>\implies\sf{AT=\sqrt{64}}⟹AT=64</p><p></p><p>\implies\sf{AT=8}⟹AT=8</p><p></p><p>Therefore, the length of the tangent AT is 8 cm.</p><p></p><p>

Similar questions