Math, asked by ajinkyajoshi437, 1 year ago

what is D.E of dy/dx=x/(x^2+9)^1/2 given y=5 n x=4

Answers

Answered by bhadragada1234567890
1

Answer:

The Chain Rule

Our goal is to differentiate functions such as

       y = (3x + 1)10  

The Chain Rule  

If  

         y = y(u)  

is a function of  u, and  

         u = u(x)  

is a function of x then

          dy           dy        du

                   =                                        

          dx            du       dx          

 

In our example we have

       y  =  u10

and  

       u  =  3x + 1  

so that

       dy/dx  =  (dy/du)(du/dx)  

       =  (10u9) (3)  =  30u9  =  30 (3x+1)9  

 

Proof of the Chain Rule

Recall an alternate definition of the derivative:

         

 

 

Examples  

Find f '(x) if

f(x) = (x3 - x + 1)20

f(x) = (x4 - 3x3 + x)5

f(x) = (1 - x)9 (1-x2)4

              (x3 + 4x - 3)7

f(x)  =                                

                 (2x - 1)3  

Solution:

Here  

       f(u) = u20

and  

       u(x) = x3 - x + 1

So that the derivative is  

       [20u19] [3x2 - 1]  =  [20(x3 - x + 1)19] [3x2 - 1]

Here  

       f(u) = u5

and  

       u(x) = x4 - 3x3 + x

So that the derivative is  

       [5u4] [4x3 - 9x2 + 1]  =  [5(x4 - 3x3 + x)4] [4x3 - 9x2 + 1]

Here we need both the product and the chain rule.  

       f'(x) = [(1 - x)9] [(1 - x2)4]' + [(1 - x)9] '  [(1 - x2)4]

We first compute

       [(1 - x2)4] ' = [4(1 - x2)3] [-2x]

and

       [(1 - x)9] '  = [9(1 - x)8] [-1]

Putting this all together gives

       f'(x) = [(1 - x)9] [4(1 - x2)3] [-2x]  -  [9(1 - x)8]  [(1 - x2)4]

Here we need both the quotient and the chain rule.

              (2x - 1)3 [(x3 + 4x - 3)7] '  -  (x3 + 4x - 3)7 [(2x - 1)3] '

f '(x) =                                                                                              

                                                       (2x - 1)6

We first compute

       [(x3 + 4x - 3)7] ' = [7(x3 + 4x - 3)6] [3x2 + 4]

and

       [(2x - 1)3] '  = [3(2x - 1)2] [2]

Putting this all together gives

                      7(2x - 1)3 (x3 + 4x - 3)6 (3x2 + 4)  +  6(x3 + 4x - 3)7 (2x - 1)2

       f '(x) =                                                                                                          

                                                                    (2x - 1)6

Step-by-step explanation:

Similar questions