what is dark matter?
its the worlds 2 most unanswered astrology question
Answers
Answer:
Two recent discoveries from cosmology prove that ordinary matter and dark matter are still not enough to explain the structure of the universe. There's a third component out there, and it's not matter but some form of dark energy.
The first line of evidence for this mystery component comes from measurements of the geometry of the universe. Einstein theorized that all matter alters the shape of space and time around it. Therefore, the overall shape of the universe is governed by the total mass and energy within it. Recent studies of radiation left over from the Big Bang show that the universe has the simplest shape—it's flat. That, in turn, reveals the total mass density of the universe. But after adding up all the potential sources of dark matter and ordinary matter, astronomers still come up two-thirds short. The second line of evidence suggests that the mystery component must be energy. Observations of distant supernovas show that the rate of expansion of the universe isn't slowing as scientists had once assumed; in fact, the pace of the expansion is increasing. This cosmic acceleration is difficult to explain unless a pervasive repulsive force constantly pushes outward on the fabric of space and time. Why dark energy produces a repulsive force field is a bit complicated. Quantum theory says virtual particles can pop into existence for the briefest of moments before returning to nothingness. That means the vacuum of space is not a true void. Rather, space is filled with low-grade energy created when virtual particles and their antimatter partners momentarily pop into and out of existence, leaving behind a very small field called vacuum energy. That energy should produce a kind of negative pressure, or repulsion, thereby explaining why the universe's expansion is accelerating. Consider a simple analogy: If you pull back on a sealed plunger in an empty, airtight vessel, you'll create a near vacuum. At first, the plunger will offer little resistance, but the farther you pull, the greater the vacuum and the more the plunger will pull back against you. Although vacuum energy in outer space was pumped into it by the weird rules of quantum mechanics, not by someone pulling on a plunger, this example illustrates how repulsion can be created by a negative pressure.
Explanation:
Answer:
(in some cosmological theories) non-luminous material that is postulated to exist in space and that could take any of several forms including weakly interacting particles ( cold dark matter ) or high-energy randomly moving particles created soon after the Big Bang ( hot dark matter ).
Explanation: