Math, asked by Anjalirawat2408, 10 months ago

what is derivative tan (4+2x)​

Answers

Answered by pulakmath007
7

let \:  \: y =  \tan(4 + 2x)

So

Differentiating both sides with respect to x we get

 \frac{dy}{dx}  =  { sec }^{2} (4 + 2x) \times  \frac{d}{dx} (4 + 2x)

  \frac{dy}{dx}  = 2 \:  {sec}^{2} (4 + 2x)

Please Mark it Brainliest

Answered by Anonymous
55

Given :

Function : y = tan(4+2x)

To Find :

dy/dx

Solution :

We have ,

\sf\:y=\tan(4+2x)

let 4+2x= u, then

\sf\:y=\tan(u)

Now Differentiate with respect to x , by chain rule

\sf\dfrac{dy}{dx}=\dfrac{d(tan\:u)}{du}\times\dfrac{du}{dx}

We know that ,  \sf\dfrac{d(\tan\:x) }{dx}  =\sec^2\:x

\sf\implies\dfrac{dy}{dx}=\sec^2u\times\dfrac{du}{dx}

\sf\implies\dfrac{dy}{dx}=\sec^2(4+2x)\times\dfrac{du}{dx}..(1)

And ,we have

u = 4+2x

Now Differentiate with respect to x

\sf\dfrac{du}{dx}=0+2

\sf\dfrac{du}{dx}=2

Now put the value of du/dx in Equation (1),then

{\purple{\boxed{\large{\bold{\dfrac{dy}{dx}=\sec^2(4+2x)\times2}}}}}

\rule{200}2

{\underline{\sf{Formula's}}}

1)\sf\:\frac{d(x {}^{n} )}{dx}  = nx {}^{n - 1}

2)\sf\:\frac{d(constant)}{dx}  = 0

3) \sf\dfrac{d(\cos\:x)}{dx} =-\sin\:x

 \sf4) \dfrac{d(\sin\:x) }{dx}  =\cos\:x

{\red{\boxed{\large{\bold{Composite\: Function (Chain\:Rule)}}}}}

Let y=f(t) ,t = g(u) and u =m(x) ,then

\sf\:\dfrac{dy}{dx}  =  \dfrac{dy}{dt}  \times  \dfrac{dt}{du}  \times  \dfrac{du}{dx}


Anonymous: Awesomeee
Anonymous: Thanks
Similar questions