Math, asked by Anonymous, 5 months ago

what is difference betweeen square and rectangle?

Answers

Answered by ANSHIKA201918
1

Answer:

The major difference between square and rectangle is that a square has all its sides equal whereas a rectangle has its opposite sides equal.

Answered by Anonymous
36

\mathfrak{dear\:user}

\mathfrak{question-differenciate\:between\:square\:and\:rectangle }

\mathfrak{here\:is\:the\:solution}

\mathbb{ANSWER}

\textbf {square}

\textsc{a square has four equal sides and four equal angles}

\textsf{A rectangle with two adjacent equal sides}

\textsf {A rhombus with a right vertex angle}

\textsf {A rhombus with all angles equal}

\textsf{A parallelogram with one right vertex angle and two adjacent equal sides}

\textsf{A quadrilateral with four equal sides and four right angles}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(4,0){2}{\line(0,1){4}}\multiput(0,0)(0,4){2}{\line(1,0){4}}\put(-0.5,-0.5){\bf D}\put(-0.5,4.2){\bf A}\put(4.2,-0.5){\bf C}\put(4.2,4.2){\bf B}\put(1.5,-0.6){\bf\large x\ cm}\put(4.4,2){\bf\large x\ cm}\end{picture}

\textbf{rectangle}

\textsc {a rectangle is a quadrilateral with four right angles.}

\textsc {It is a parallelogram containing a right angle}

\textsf{a parallelogram with at least one right angle}

\textsf {a parallelogram with diagonals of equal length}

\textsf{a parallelogram ABCD where triangles ABD and DCA are congruent}

\textsf{an equiangular quadrilateral}

\textsf{ a quadrilateral with four right angles}

\textsf{a quadrilateral where the two diagonals are equal in length and bisect each other}

\setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large x cm}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large y cm}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

\mathbb{EXTRA \:INFORMATION}

\textsf{area  of square}

\textsf{Area=Side x Side}

\textsf{A=Area,S=side}

\textsf{A=SxS}\\

\textsf{A=}S^2

\textsf {perimeter of square}

\textsf{Perimeter=4sides}

\textsf{Perimeter=P,S=Side }

\textsf{P=4S }

\textsf{area  of rectangle }

\textsf{Area=Lengthx Breadth }

\textsf{A=Area,L=Length,B=Breadth }

\textsf{A=LxB}\\

\textsf {perimeter of rectangle}

\textsf{Perimeter=4sides}

\textsf{Perimeter=P,L=Length,B=Breadth  }

\textsf{perimeter=2(l+b)}

\to HOPE\:IT\:HELPS

\to PLEASE\:DON'T \:COPY

\mathcal{HOPE\:IT\:HELPS}

\mathcal{BY \:BRAINLY \:ROSHAN}

Similar questions