Math, asked by ashuksahu9412, 11 months ago

what is differentiation of???​

Attachments:

Answers

Answered by kaushik05
46

To Differentiate :

 { \cot}^{ - 1} ( \sqrt{1 +  {x}^{2}  }  + x) \\

Let

x =  \cot \alpha

 \implies  { \cot}^{ - 1} ( \sqrt{1 +  { \cot}^{2} \alpha  }  +  \cot( \alpha ) ) \\  \\  \implies { \cot}^{ - 1} ( \sqrt{ {  \cosec}^{2}  \alpha  }  +  \cot \alpha ) \\  \\  \implies \:  { \cot}^{ - 1} ( \frac{1}{ \sin( \alpha ) }   +  \frac{ \cos( \alpha ) }{ \sin( \alpha ) } ) \\  \\  \implies { \cot}^{ - 1} ( \frac{1 +  \cos( \alpha ) }{ \sin( \alpha ) } ) \\  \\  \implies { \cot}^{ - 1} ( \frac{2 { \cos}^{2} \frac{ \alpha }{2}  }{2 \sin \frac{ \alpha }{2}  \cos \frac{ \alpha }{2} } )  \\  \\  \implies \:  { \cot}^{ - 1} (  \frac{ \cos \frac{ \alpha }{2} }{ \sin \frac{ \alpha }{2} } ) \\  \\  \implies { \cot}^{ - 1} ( \cot \frac{ \alpha }{2}) \\  \\  \implies \:  \frac{ \alpha }{2}

NOW PUT THE VALUE OF ALPHA :

 \star \:  \frac{1}{2} ( { \cot}^{ - 1} x)

Differentiate w.r.t. X

 \star \:  \frac{d}{dx}  \: ( \frac{1}{2} ( { \cot}^{ - 1} x)) \\  \\   \star \:  \frac{1}{2} ( -  \frac{1}{1 +  {x}^{2} } ) \\  \\ \star \:  -  \frac{1}{2(1 +  {x}^{2} )}

Formula :

 \star \:  \boxed{ \green{ \frac{d}{dx}  { \cot}^{ - 1} x =  -  \frac{1}{1 +  {x}^{2} }  }}\\  \\  \star \:  \boxed{ \red{1 +  \cos( \alpha )  = 2 { \cos}^{2}  \frac{ \alpha }{2} }} \\  \\

Answered by parry8016
3

Step-by-step explanation:

HERE IS U R ANSWER DEAR PLZ FOLLW ME

Attachments:
Similar questions