English, asked by Anonymous, 4 months ago

what is ________?

don't spam

xD​

Answers

Answered by lavairis504qjio
3

Explanation:

XD is an abbreviation for laughing, as well as an emoticon. It is often seen in a text message or online when a user thinks something is really funny. If you tilt your head left 90 degress it becomes a face where the X represents the eyes and the D is the mouth.

Answered by llitzyourbfll
2

Answer:

hum aapke friend ban sakte hai yes to brainlist karo

Explanation:

Given : Simple interest on a certain sum for 4 years at 7% p.a. is more than simple interest on the same sum for 2.5 years at the same rate by 840.

Exigency To Find : The Principal amount.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's Consider the Principal amount be P .

\begin{gathered}\dag\:\:\sf{ As,\:We\:know\:that\::}\\\\ \qquad\maltese\:\:\bf \:Formula\:for\:Simple\:Interest\:\::\\\end{gathered}

†As,Weknowthat:

✠FormulaforSimpleInterest:

\begin{gathered}\qquad \dag\:\:\bigg\lgroup \sf{Simple \:Interest \:: \dfrac{P \times R \times T}{100} }\bigg\rgroup \\\\\end{gathered}

SimpleInterest:

100

P×R×T

⠀⠀⠀⠀⠀Here , P is the Principal, R is the Rate of Interest & T is the Time.

⠀⠀⠀⠀⠀⠀\begin{gathered}\underline {\boldsymbol{\star\: According \:to\: the \:Question \::}}\\\end{gathered}

⋆AccordingtotheQuestion:

⠀⠀⠀⠀⠀━━━ Simple interest on a certain sum for 4 years at 7% p.a. is more than simple interest on the same sum for 2.5 years at the same rate by 840.

\begin{gathered}\qquad:\implies \sf 1^{st} \: Simple \:Interest \: = \: 2^{nd} \: Simple \:Interest\:\:+ 840 \\\end{gathered}

:⟹1

st

SimpleInterest=2

nd

SimpleInterest+840

\begin{gathered}\qquad:\implies \sf \dfrac{ P \times 7 \:\times 4 }{100} = \dfrac{ P \times 7 \:\times 2.5 }{100} + 840 \\\end{gathered}

:⟹

100

P×7×4

=

100

P×7×2.5

+840

\begin{gathered}\qquad:\implies \sf \dfrac{ P \times 28 }{100} = \dfrac{ P \times 17.5 }{100} + 840 \\\end{gathered}

:⟹

100

P×28

=

100

P×17.5

+840

\begin{gathered}\qquad:\implies \sf \dfrac{ 28P }{100} = \dfrac{ 17.5P }{100} + 840 \\\end{gathered}

:⟹

100

28P

=

100

17.5P

+840

\begin{gathered}\qquad:\implies \sf \cancel {\dfrac{ 28P }{100}} = \dfrac{ 17.5P }{100} + 840 \\\end{gathered}

:⟹

100

28P

=

100

17.5P

+840

\begin{gathered}\qquad:\implies \sf 0.28 \:P = \dfrac{ 17.5P }{100} + 840 \\\end{gathered}

:⟹0.28P=

100

17.5P

+840

\begin{gathered}\qquad:\implies \sf 0.28 \:P = \cancel {\dfrac{ 17.5P }{100}} + 840 \\\end{gathered}

:⟹0.28P=

100

17.5P

+840

\begin{gathered}\qquad:\implies \sf 0.28 \:P = 0.175P + 840 \\\end{gathered}

:⟹0.28P=0.175P+840

\begin{gathered}\qquad:\implies \sf 0.28 \:P- 0.175 P = 840 \\\end{gathered}

:⟹0.28P−0.175P=840

\begin{gathered}\qquad:\implies \sf 0.105 P = 840 \\\end{gathered}

:⟹0.105P=840

\begin{gathered}\qquad:\implies \sf P = \dfrac{840}{0.015} \\\end{gathered}

:⟹P=

0.015

840

\begin{gathered}\qquad:\implies \sf P = \cancel {\dfrac{840}{0.015}} \\\end{gathered}

:⟹P=

0.015

840

\begin{gathered}\qquad:\implies \bf P = 8000 \\\end{gathered}

:⟹P=8000

\begin{gathered}\qquad:\implies \frak{\underline{\purple{\:P = Rs.8000 }} }\:\:\bigstar \\\end{gathered}

:⟹

P=Rs.8000

Therefore,

⠀⠀⠀⠀⠀\begin{gathered}\therefore {\underline{ \mathrm {\:Principal \:amount\:\:is\:\bf{Rs.8000}}}}\\\end{gathered}

PrincipalamountisRs.8000

Similar questions