Math, asked by kelkarsunil, 6 months ago

what is double derivative of x^m*y^n=x+y^m+n​

Attachments:

Answers

Answered by Anonymous
7

Solution:-

 \rm \to \:  {x}^{m} y^{n}  = (x + y)^{m + n}

=> Taking Both side log

 \rm \to \:  log( {x}^{m}  {y}^{n} )  =  log(x + y)^{m + n}

=> Using Log properties

 \rm \to \:  log  x ^{y}  = y logx

=> We can write

 \rm \to \:  log( {x}^{m}  {y}^{n} ) = (m + n) log(x + y)

 \rm \to \:  log(x ^{m} )  +  log( {y}^{n} )  = (m + n) log(x + y)

 \rm \to \: m log(x) + n log(y) =  (m + n) log(x + y)

=> Now differentiate w.r.t x

 \rm \to \: m \dfrac{1}{x}  + n \dfrac{1}{y}  \dfrac{dy}{dx}  = (m + n) \dfrac{1}{x + y}  \bigg(1 +  \dfrac{dy}{dx}  \bigg)

 \rm \to \:  \dfrac{m}{x}  +  \dfrac{n}{y}  \dfrac{dy}{dx}  =  \dfrac{m + n}{x + y}  \bigg(1 +  \dfrac{dy}{dx}  \bigg)

 \rm \to \:  \dfrac{m}{x}  +  \dfrac{n}{y}  \dfrac{dy}{dx}  =  \dfrac{m + n}{x + y}  +  \bigg( \dfrac{m + n}{x + y}  \bigg) \dfrac{dy}{dx}

=> Now take dy/dx on one side

 \rm \to \:  \dfrac{n}{y}  \dfrac{dy}{dx}  -  \dfrac{m + n}{x + y}  \dfrac{dy}{dx}  =  \dfrac{m + n}{x + y}  -  \dfrac{m}{x}

 \rm \to \:  \bigg( \dfrac{n}{y}  -  \dfrac{m + n}{x + y}  \bigg) \dfrac{dy}{dx}  =  \dfrac{(m + n)x - m(x + y)}{x(x + y)}

 \rm \to \:   \bigg(\dfrac{(x + y)n - (m + n)y}{y(x + y)}  \bigg) \dfrac{dy}{dx}  =  \dfrac{mx + nx - mx - my}{x(x + y)}

 \rm \to \:   \bigg(\dfrac{(x + y)n - (m + n)y}{y \cancel{(x + y)} } \bigg) \dfrac{dy}{dx}  =  \dfrac{ \cancel{mx }+ nx -  \cancel{mx} - my}{x \cancel{(x + y)}}

 \rm \to \:  \bigg( \dfrac{nx + ny - my - ny}{y}  \bigg) \dfrac{dy}{dx}  =  \dfrac{nx - my}{x}

\rm \to \:  \bigg( \dfrac{nx +  \cancel{ny} - my - \cancel{ ny}}{y}  \bigg) \dfrac{dy}{dx}  =  \dfrac{nx - my}{x}

 \rm \to \bigg( \dfrac{nx - my}{y}  \bigg)  \dfrac{dy}{dx} =  \dfrac{nx - my}{x}

  \rm \to \bigg( \dfrac{ \cancel{nx - my}}{y}  \bigg)  \dfrac{dy}{dx} =  \dfrac{ \cancel{nx - my}}{x}

 \rm \to \bigg( \dfrac{1}{y}  \bigg)  \dfrac{dy}{dx} =  \dfrac{1}{x}

 \rm \to \:  \dfrac{dy}{dx}  =  \dfrac{y}{x}

=> again differentiate w.r.t x

 \rm \to \:  \dfrac{ {d}^{2}y }{d {x}^{2} }  =  \dfrac{ \dfrac{dy}{dx}x - y }{ {x}^{2} }

=>Put the value of dy/dx

\rm \to \:  \dfrac{ {d}^{2}y }{d {x}^{2} } =  \dfrac{ \dfrac{y}{x} \times x - y }{ {x}^{2} }

\rm \to \:  \dfrac{ {d}^{2}y }{d {x}^{2} } =  \dfrac{y - y}{ {x}^{2} }  =  \dfrac{0}{ {x}^{2} }  = 0

Answer

\rm \to \:  \dfrac{ {d}^{2}y }{d {x}^{2} } = 0

Similar questions