What is electric potential engery? How does a charge acquire electric potential ?
Answers
Electric potential energy is the energy that is needed to move a charge against an electric field. You need more energy to move a charge further in the electric field, but also more energy to move it through a stronger electric field.
Imagine that you have a huge negatively charged plate, with a little positively charged particle stuck to it through the electric force. There’s an electric field around the plate that’s pulling all positively charged objects toward it (while pushing other negatively charged objects away).
You take the positive particle, and start to pull it off the plate, against the pull of the electric field. It’s hard work, because the electric force is pulling them together. If you let the positive particle go, it would snap back to the negative plate, pulled by the electric force. The energy that you used to move the particle away from the plate is stored in the particle as electrical potential energy. It is the potential that the particle has to move when it’s let go.If you pulled the positive particle further away from the plate, you would have to use more energy, so the charge would have more electrical potential energy stored in it. If we doubled the charge on the plate, again, you would need more energy to move the positive particle. If we doubled the charge on the positive particle, you would need more energy to move it. You get the idea.
Imagine that instead of a negatively charged plate, our plate is positively charged. Our positive particle would be pushed away from the plate since they are both positively charged. This time, we have to put in energy to try to move the particle closer to the plate, instead of to pull it away. The closer we try to move it to the plate, the more energy we have to put in, so the more electrical potential energy the particle would have.
Electric potential energy is the energy that is needed to move a charge against an electric field. You need more energy to move a charge further in the electric field, but also more energy to move it through a stronger electric field.
Imagine that you have a huge negatively charged plate, with a little positively charged particle stuck to it through the electric force. There’s an electric field around the plate that’s pulling all positively charged objects toward it (while pushing other negatively charged objects away).
You take the positive particle, and start to pull it off the plate, against the pull of the electric field. It’s hard work, because the electric force is pulling them together. If you let the positive particle go, it would snap back to the negative plate, pulled by the electric force. The energy that you used to move the particle away from the plate is stored in the particle as electrical potential energy. It is the potential that the particle has to move when it’s let go.If you pulled the positive particle further away from the plate, you would have to use more energy, so the charge would have more electrical potential energy stored in it. If we doubled the charge on the plate, again, you would need more energy to move the positive particle. If we doubled the charge on the positive particle, you would need more energy to move it. You get the idea.
Imagine that instead of a negatively charged plate, our plate is positively charged. Our positive particle would be pushed away from the plate since they are both positively charged. This time, we have to put in energy to try to move the particle closer to the plate, instead of to pull it away. The closer we try to move it to the plate, the more energy we have to put in, so the more electrical potential energy the particle would have.