English, asked by princy9797, 1 month ago

what is electrostatic force?​

Answers

Answered by sweetyani272
1

Explanation:

Electrostatics is a branch of physics that studies electric charges at rest. Since classical physics, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amber, ήλεκτρον, or electron, was thus the source of the word 'electricity'.

ellø♡

Answered by XxcupcakexX22
1

Answer:

Explanation:An electrostatic effect: foam peanuts clinging to a cat's fur due to static electricity. The triboelectric effect causes an electrostatic charge to build up on the surface of the fur due to the cat's motions. The electric field of the charge causes polarization of the molecules of the foam due to electrostatic induction, resulting in a slight attraction of the light plastic pieces to the charged fur.[1][2][3][4] This effect is also the cause of static cling in clothes.

Since classical physics, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amber, ήλεκτρον, or electron, was thus the source of the word 'electricity'. Electrostatic phenomena arise from the forces that electric charges exert on each other. Such forces are described by Coulomb's law. Even though electrostatically induced forces seem to be rather weak, some electrostatic forces such as the one between an electron and a proton, that together make up a hydrogen atom, is about 36 orders of magnitude stronger than the gravitational force acting between them.

There are many examples of electrostatic phenomena, from those as simple as the attraction of the plastic wrap to one's hand after it is removed from a package to the apparently spontaneous explosion of grain silos, the damage of electronic components during manufacturing, and photocopier & laser printer operation. Electrostatics involves the buildup of charge on the surface of objects due to contact with other surfaces. Although charge exchange happens whenever any two surfaces contact and separate, the effects of charge exchange are usually only noticed when at least one of the surfaces has a high resistance to electrical flow. This is because the charges that transfer are trapped there for a time long enough for their effects to be observed. These charges then remain on the object until they either bleed off to ground or are quickly neutralized by a discharge: e.g., the familiar phenomenon of a static "shock" is caused by the neutralization of charge built up in the body from contact with insulated surfaces.

Similar questions