what is formula to find general solution in trignometry
Answers
General Solution
sin θ = 0
Then θ = nπ
cos θ = 0
θ = (nπ + π/2)
tan θ = 0
θ = nπ
sin θ = 1
θ = (2nπ + π/2) = (4n+1)π/2
cos θ = 1
θ = 2nπ
sin θ = sin α
θ = nπ + (-1)nα, where α ∈ [-π/2, π/2]
cos θ = cos α
θ = 2nπ ± α, where α ∈ (0, π]
tan θ = tan α
θ = nπ + α, where α ∈ (-π/2 , π/2]
sin2 θ = sin2 α
θ = nπ ± α
cos2 θ = cos2 α
θ = nπ ± α
tan2 θ = tan2 α
θ = nπ ± α
1. If sin θ = 0 then θ = nπ, where n = zero or any integer.
2. If sin θ = sin ∝ then θ = nπ + (-1)^n ∝, where n = zero or any integer.
3. If sin θ = 1 then θ = (4n + 1)π/2, where n = zero or any integer.
4. If sin θ = -1 then θ = (4n - 1)π/2, where n = zero or any integer.
5. If cos θ = 0 then θ = (2n + 1)π/2, where n = zero or any integer.
6. If cos θ = cos ∝ then θ = 2nπ ± ∝, where n = zero or any integer.
7. If cos θ = 1 then θ = 2nπ, where n = zero or any integer.
8. If cos θ = -1 then θ = (2n + 1)π, where n = zero or any integer.
9. If tan θ = 0 then θ = nπ, where n = zero or any integer.
10. If tan θ = tan ∝ than θ = nπ + ∝, where n = zero or any integer.
11. If sin^2 θ = sin2 ∝ then θ = nπ ± ∝, where n = zero or any integer.
12. If cos^2 θ = cos2 ∝ then θ = nπ ± ∝, where n = zero or any integer.
13. If tan^2 θ = tan2 ∝ than θ = nπ ± ∝, where n = zero or any integer.
14. If a cos θ + b sin θ = c then θ = 2nπ + ∝ ± β, where cos β = c/, cos ∝ = and sin ∝ = , where n = zero or any integer.