Physics, asked by vedantsawant22, 1 year ago

what is fundamental law of electrostatics ​

Answers

Answered by Anonymous
1

Explanation:

Laws of Electrostatics. First law: Like charges of electricity repel each other, whereas unlike charges attract each other. Second law:According to this law, the force exerted between two point charges. i) is directly proportional to the product of their strengths.

.

Answered by poojatanna889
0

FUNDAMENTAL LAW OF ELECTROSTATIC:

Coulomb's law, or Coulomb's inverse-square law, is an experimental law[1] of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force[2] or Coulomb force.[3] The quantity of electrostatic force between stationary charges is always described by Coulomb's law.[4] The law was first published in 1785 by French physicist Charles-Augustin de Coulomb, and was essential to the development of the theory of electromagnetism, maybe even its starting point,[5] because it was now possible to discuss quantity of electric charge in a meaningful way.

Coulomb's law, or Coulomb's inverse-square law, is an experimental law[1] of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force[2] or Coulomb force.[3] The quantity of electrostatic force between stationary charges is always described by Coulomb's law.[4] The law was first published in 1785 by French physicist Charles-Augustin de Coulomb, and was essential to the development of the theory of electromagnetism, maybe even its starting point,[5] because it was now possible to discuss quantity of electric charge in a meaningful way.In its scalar form, the law is:

Coulomb's law, or Coulomb's inverse-square law, is an experimental law[1] of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force[2] or Coulomb force.[3] The quantity of electrostatic force between stationary charges is always described by Coulomb's law.[4] The law was first published in 1785 by French physicist Charles-Augustin de Coulomb, and was essential to the development of the theory of electromagnetism, maybe even its starting point,[5] because it was now possible to discuss quantity of electric charge in a meaningful way.In its scalar form, the law is:where ke is Coulomb's constant (ke ≈ 9×109 N⋅m2⋅C−2),[7] q1 and q2 are the signed magnitudes of the charges, and the scalar r is the distance between the charges. The force of the interaction between the charges is attractive if the charges have opposite signs (i.e., F is negative) and repulsive if like-signed (i.e., F is positive).

Coulomb's law, or Coulomb's inverse-square law, is an experimental law[1] of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force[2] or Coulomb force.[3] The quantity of electrostatic force between stationary charges is always described by Coulomb's law.[4] The law was first published in 1785 by French physicist Charles-Augustin de Coulomb, and was essential to the development of the theory of electromagnetism, maybe even its starting point,[5] because it was now possible to discuss quantity of electric charge in a meaningful way.In its scalar form, the law is:where ke is Coulomb's constant (ke ≈ 9×109 N⋅m2⋅C−2),[7] q1 and q2 are the signed magnitudes of the charges, and the scalar r is the distance between the charges. The force of the interaction between the charges is attractive if the charges have opposite signs (i.e., F is negative) and repulsive if like-signed (i.e., F is positive).Being an inverse-square law, the law is analogous to Isaac Newton's inverse-square law of universal gravitation, but gravitational forces are always attractive, while electrostatic forces can be attractive or repulsive.[8] Coulomb's law can be used to derive Gauss's law, and vice versa. In the case of a single stationary point charge, the two laws are equivalent, expressing the same physical law in different ways.[9] The law has been tested extensively, and observations have upheld the law on a scale from 10−16 m to 108 m.[10]

MARK AS BRAINLIEST

MARK AS BRAINLIESTFOLLOW ME

Similar questions