what is golden ratio?How we relate it with Fibonacci series?
Answers
Answered by
0
actually golden ratio is 1 : 1.618.
the Fibonacci series is
1,1,2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
So, dividing each number by the previous number gives: 1 / 1 = 1, 2 / 1 = 2, 3 / 2 = 1.5, and so on up to 144 / 89 = 1.6179…. The resulting sequence is:
1, 2, 1.5, 1.666..., 1.6, 1.625, 1.615…, 1.619…, 1.6176…, 1.6181…, 1.6179…
But do you notice anything about those numbers? Perhaps the fact that they keep oscillating around and getting tantalizingly closer and closer to 1.618?—the value of phi: the golden ratio! Indeed, completely unbeknownst to Fibonacci, his solution to the rabbit population growth problem has a deep underlying connection to the golden ratio.
the Fibonacci series is
1,1,2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...
So, dividing each number by the previous number gives: 1 / 1 = 1, 2 / 1 = 2, 3 / 2 = 1.5, and so on up to 144 / 89 = 1.6179…. The resulting sequence is:
1, 2, 1.5, 1.666..., 1.6, 1.625, 1.615…, 1.619…, 1.6176…, 1.6181…, 1.6179…
But do you notice anything about those numbers? Perhaps the fact that they keep oscillating around and getting tantalizingly closer and closer to 1.618?—the value of phi: the golden ratio! Indeed, completely unbeknownst to Fibonacci, his solution to the rabbit population growth problem has a deep underlying connection to the golden ratio.
Mayankshah11:
why it is so popular?please explain.
Similar questions
Political Science,
7 months ago
History,
7 months ago
English,
1 year ago
Science,
1 year ago
Science,
1 year ago