what is integration by parts
Answers
Answer:
Integration by Parts is a special method of integration that is often useful when two functions are multiplied together, but is also helpful in other ways. You will see plenty of examples soon, but first let us see the rule: ∫u v dx = u∫v dx −∫u' (∫v dx) dx. u is the function u(x)
Explanation:
In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation.
If {\displaystyle u=u(x)}{\displaystyle u=u(x)} and {\displaystyle du=u'(x)\,dx}{\displaystyle du=u'(x)\,dx} while {\displaystyle v=v(x)}{\displaystyle v=v(x)} and {\displaystyle dv=v'(x)dx}{\displaystyle dv=v'(x)dx}, then the integration by parts formula states that
{\displaystyle {\begin{aligned}\int _{a}^{b}u(x)v'(x)\,dx&={\Big [}u(x)v(x){\Big ]}_{a}^{b}-\int _{a}^{b}u'(x)v(x)\,dx\\[6pt]&=u(b)v(b)-u(a)v(a)-\int _{a}^{b}u'(x)v(x)\,dx.\end{aligned}}}{\displaystyle {\begin{aligned}\int _{a}^{b}u(x)v'(x)\,dx&={\Big [}u(x)v(x){\Big ]}_{a}^{b}-\int _{a}^{b}u'(x)v(x)\,dx\\[6pt]&=u(b)v(b)-u(a)v(a)-\int _{a}^{b}u'(x)v(x)\,dx.\end{aligned}}}
More compactly,
{\displaystyle \int u\,dv\ =\ uv-\int v\,du.}{\displaystyle \int u\,dv\ =\ uv-\int v\,du.}
Mathematician Brook Taylor discovered integration by parts, first publishing the idea in 1715.[1][2] More general formulations of integration by parts exist for the Riemann–Stieltjes and Lebesgue–Stieltjes integrals. The discrete analogue for sequences is called summation by parts.
Hope it helps ☺️☘️