what is intigration of tanx
Answers
Answered by
2
integration sinx/cosx
let cosx=z so dz/dx=-sinx orr dx=-dz/sinx
putting value of dx we get
integration (sinx/cosx)-dz/sinx= -dz/z
hence integration of 1/z= log z
so integration tanx= log|cosx|+c
let cosx=z so dz/dx=-sinx orr dx=-dz/sinx
putting value of dx we get
integration (sinx/cosx)-dz/sinx= -dz/z
hence integration of 1/z= log z
so integration tanx= log|cosx|+c
veronica11:
nic...
Answered by
0
we know that
tan x=(sinx/cosx)
∫ tan(x) dx = ∫ sin(x)/cos(x) dx
Let cos(x) = u
-sin(x) dx = du
sin(x) dx = -du
The integral becomes
- ∫ du/u = -ln|u| = - ln |cos(x)| + C
tanx=-ln cos(x)
tan x=(sinx/cosx)
∫ tan(x) dx = ∫ sin(x)/cos(x) dx
Let cos(x) = u
-sin(x) dx = du
sin(x) dx = -du
The integral becomes
- ∫ du/u = -ln|u| = - ln |cos(x)| + C
tanx=-ln cos(x)
Similar questions