Math, asked by hellotoalll, 7 months ago

what is irrational number ?​

Answers

Answered by Anonymous
0

In mathematics, the irrational numbers are all the real numbers which are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers.

Answered by BʀᴀɪɴʟʏAʙCᴅ
1

\huge\mathcal{\underline{\color{aqua}QUESTION}}

⭐ what is irrational number ?

\huge{\orange{\boxed{\fcolorbox{lime}{cadetblue}{\pink{ANSWER}}}}} \\

☕ In mathematics, the irrational numbers are all the real numbers which are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two integers.

☕ In the case of irrational numbers, the decimal expansion does not terminate, nor end with a repeating sequence. For example, the decimal representation of π starts with 3.14159, but no finite number of digits can represent π exactly, nor does it repeat.

☕ Irrational numbers are real numbers that, when expressed as a decimal, go on forever after the decimal and never repeat. This is opposed to rational numbers, like 2, 7, one-fifth and -13/9, which can be, and are, expressed as the ratio of two whole numbers.

✨ An irrational number is a type of real number which cannot be represented as a simple fraction. It cannot be expressed in the form of a ratio. If N is irrational, then N is not equal to p/q where p and q are integers and q is not equal to 0.

✔️ Example: √2, √3, √5, √11, √21, π(Pi) are all irrational.

Similar questions