Math, asked by ashisahu12367, 5 months ago

What is length and breadth of the rectangle whose area is 4a^2+ 4x – 3.


please give little short answer​

Answers

Answered by Itzsweetcookie
1

GivenArea =4a2+4a−3.We know thatArea of rectangle = length × breadth 

GivenArea =4a2+4a−3.We know thatArea of rectangle = length × breadth So, to find the possible expressions for the length and breadth we have to factorise the given expression.

4x2+4x−3=0

4x2+4x−3=04 {x}^{2} + 6x - 2x - 3 = 04x2+6x−2x−3=0

4x2+4x−3=04 {x}^{2} + 6x - 2x - 3 = 04x2+6x−2x−3=02x(2x + 3) - 1(2x + 3) = 02x(2x+3)−1(2x+3)=0

4x2+4x−3=04 {x}^{2} + 6x - 2x - 3 = 04x2+6x−2x−3=02x(2x + 3) - 1(2x + 3) = 02x(2x+3)−1(2x+3)=0(2x + 3)(2x - 1) = 0(2x+3)(2x−1)=0

4x2+4x−3=04 {x}^{2} + 6x - 2x - 3 = 04x2+6x−2x−3=02x(2x + 3) - 1(2x + 3) = 02x(2x+3)−1(2x+3)=0(2x + 3)(2x - 1) = 0(2x+3)(2x−1)=0so , either

4x2+4x−3=04 {x}^{2} + 6x - 2x - 3 = 04x2+6x−2x−3=02x(2x + 3) - 1(2x + 3) = 02x(2x+3)−1(2x+3)=0(2x + 3)(2x - 1) = 0(2x+3)(2x−1)=0so , either\begin{gathered}2x - 1 = 0 \\ \implies \: x = \frac{1}{2} \end{gathered}2x−1=0⟹x=21

4x2+4x−3=04 {x}^{2} + 6x - 2x - 3 = 04x2+6x−2x−3=02x(2x + 3) - 1(2x + 3) = 02x(2x+3)−1(2x+3)=0(2x + 3)(2x - 1) = 0(2x+3)(2x−1)=0so , either\begin{gathered}2x - 1 = 0 \\ \implies \: x = \frac{1}{2} \end{gathered}2x−1=0⟹x=21or

4x2+4x−3=04 {x}^{2} + 6x - 2x - 3 = 04x2+6x−2x−3=02x(2x + 3) - 1(2x + 3) = 02x(2x+3)−1(2x+3)=0(2x + 3)(2x - 1) = 0(2x+3)(2x−1)=0so , either\begin{gathered}2x - 1 = 0 \\ \implies \: x = \frac{1}{2} \end{gathered}2x−1=0⟹x=21or\begin{gathered}2x + 3 = 0 \\ \implies \: x = \frac{ - 3}{2} \: \: \: \: rejected\end{gathered}2x+3=0⟹x=2−3rejected

4x2+4x−3=04 {x}^{2} + 6x - 2x - 3 = 04x2+6x−2x−3=02x(2x + 3) - 1(2x + 3) = 02x(2x+3)−1(2x+3)=0(2x + 3)(2x - 1) = 0(2x+3)(2x−1)=0so , either\begin{gathered}2x - 1 = 0 \\ \implies \: x = \frac{1}{2} \end{gathered}2x−1=0⟹x=21or\begin{gathered}2x + 3 = 0 \\ \implies \: x = \frac{ - 3}{2} \: \: \: \: rejected\end{gathered}2x+3=0⟹x=2−3rejectedSo ,

4x2+4x−3=04 {x}^{2} + 6x - 2x - 3 = 04x2+6x−2x−3=02x(2x + 3) - 1(2x + 3) = 02x(2x+3)−1(2x+3)=0(2x + 3)(2x - 1) = 0(2x+3)(2x−1)=0so , either\begin{gathered}2x - 1 = 0 \\ \implies \: x = \frac{1}{2} \end{gathered}2x−1=0⟹x=21or\begin{gathered}2x + 3 = 0 \\ \implies \: x = \frac{ - 3}{2} \: \: \: \: rejected\end{gathered}2x+3=0⟹x=2−3rejectedSo ,Length = 1/2

Answered by Anonymous
2

 4 {x}^{2}  + 4x - 3 = 0

 4 {x}^{2}  + 6x - 2x - 3 = 0

2x(2x + 3)  -  1(2x + 3) = 0

 (2x + 3)(2x - 1) = 0

so , either

2x - 1 = 0 \\  \implies \: x =  \frac{1}{2}

or

2x + 3 = 0 \\  \implies \: x =  \frac{ - 3}{2}  \:  \:  \:  \: rejected

So ,

  • Length = 1/2
Similar questions