what is mass wasting ?how does it occurs
Answers
Answered by
1

Wiki Loves Love: Documenting festivals and celebrations of love on Commons.
Help Wikimedia and win prizes by sending photos.
Open main menu

Search
Edit
Watch this page
Read in another language
Mass wasting
Learn more
This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations.

Talus cones produced by mass wasting, north shore of Isfjord, Svalbard, Norway.

Mass wasting at Palo Duro Canyon, West Texas (2002)

A rockfall in Grand Canyon National Park
Mass wasting, also known as slope movement or mass movement, is the geomorphic process by which soil, sand, regolith, and rock move downslope typically as a solid, continuous or discontinuous mass, largely under the force of gravity, but frequently with characteristics of a flow as in debris flows and mudflows.[1] Types of mass wasting include creep, slides, flows, topples, and falls, each with its own characteristic features, and taking place over timescales from seconds to hundreds of years. Mass wasting occurs on both terrestrial and submarine slopes, and has been observed on Earth, Mars, Venus, and Jupiter's moon Io.
When the gravitational force acting on a slope exceeds its resisting force, slope failure (mass wasting) occurs. The slope material's strength and cohesion and the amount of internal friction between material help maintain the slope's stability and are known collectively as the slope's shear strength. The steepest angle that a cohesionless slope can maintain without losing its stability is known as its angle of repose. When a slope made of loose material possesses this angle, its shear strength perfectly counterbalances the force of gravity acting upon it.
Mass wasting may occur at a very slow rate, particularly in areas that are very dry or those areas that receive sufficient rainfall such that vegetation has stabilized the surface. It may also occur at very high speed, such as in rockslides or landslides, with disastrous consequences, both immediate and delayed, e.g., resulting from the formation of landslide dams.
Factors that change the potential of mass wasting include: change in slope angle, weakening of material by weathering, increased water content; changes in vegetation cover, and overloading.
Volcano flanks can become over-steep resulting in instability and mass wasting. This is now a recognised part of the growth of all active volcanoes. It is seen on submarine as well as surface volcanoes: Loihi in the Hawaiian volcanic chain and Kick 'em Jennyin the Caribbean volcanic arc are two submarine volcanoes that are known to undergo mass wasting. The failure of the northern flank of Mount St Helens in 1980 showed how rapidly volcanic flanks can deform and fail.
Role of water
Types
Triggers
Mitigation
See also
References
External links
Wiki Loves Love: Documenting festivals and celebrations of love on Commons.
Help Wikimedia and win prizes by sending photos.
Open main menu

Search
Edit
Watch this page
Read in another language
Mass wasting
Learn more
This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations.

Talus cones produced by mass wasting, north shore of Isfjord, Svalbard, Norway.

Mass wasting at Palo Duro Canyon, West Texas (2002)

A rockfall in Grand Canyon National Park
Mass wasting, also known as slope movement or mass movement, is the geomorphic process by which soil, sand, regolith, and rock move downslope typically as a solid, continuous or discontinuous mass, largely under the force of gravity, but frequently with characteristics of a flow as in debris flows and mudflows.[1] Types of mass wasting include creep, slides, flows, topples, and falls, each with its own characteristic features, and taking place over timescales from seconds to hundreds of years. Mass wasting occurs on both terrestrial and submarine slopes, and has been observed on Earth, Mars, Venus, and Jupiter's moon Io.
When the gravitational force acting on a slope exceeds its resisting force, slope failure (mass wasting) occurs. The slope material's strength and cohesion and the amount of internal friction between material help maintain the slope's stability and are known collectively as the slope's shear strength. The steepest angle that a cohesionless slope can maintain without losing its stability is known as its angle of repose. When a slope made of loose material possesses this angle, its shear strength perfectly counterbalances the force of gravity acting upon it.
Mass wasting may occur at a very slow rate, particularly in areas that are very dry or those areas that receive sufficient rainfall such that vegetation has stabilized the surface. It may also occur at very high speed, such as in rockslides or landslides, with disastrous consequences, both immediate and delayed, e.g., resulting from the formation of landslide dams.
Factors that change the potential of mass wasting include: change in slope angle, weakening of material by weathering, increased water content; changes in vegetation cover, and overloading.
Volcano flanks can become over-steep resulting in instability and mass wasting. This is now a recognised part of the growth of all active volcanoes. It is seen on submarine as well as surface volcanoes: Loihi in the Hawaiian volcanic chain and Kick 'em Jennyin the Caribbean volcanic arc are two submarine volcanoes that are known to undergo mass wasting. The failure of the northern flank of Mount St Helens in 1980 showed how rapidly volcanic flanks can deform and fail.
Role of water
Types
Triggers
Mitigation
See also
References
External links
Similar questions