What is meant by synthetic biology and cell factory?
Answers
Synthetic Biology: is the design and construction of new biological entities such as enzymes, genetic circuits, and cells or the redesign of existing biological systems. Synthetic biology builds on the advances in molecular, cell, and systems biology and seeks to transform biology in the same way that synthesis transformed chemistry and integrated circuit design transformed computing. The element that distinguishes synthetic biology from traditional molecular and cellular biology is the focus on the design and construction of core components (parts of enzymes, genetic circuits, metabolic pathways, etc.) that can be modeled, understood, and tuned to meet specific performance criteria, and the assembly of these smaller parts and devices into larger integrated systems to solve specific problems. Just as engineers now design integrated circuits based on the known physical properties of materials and then fabricate functioning circuits and entire processors (with relatively high reliability), synthetic biologists will soon design and build engineered biological systems. Unlike many other areas of engineering, biology is incredibly non-linear and less predictable, and there is less knowledge of the parts and how they interact. Hence, the overwhelming physical details of natural biology (gene sequences, protein properties, biological systems) must be organized and recast via a set of design rules that hide information and manage complexity, thereby enabling the engineering of many-component integrated biological systems. It is only when this is accomplished that designs of significant scale will be possible.
Synthetic biology arose from four different intellectual agendas. The first is the scientific idea that one practical test of understanding is an ability to reconstitute a functional system from its basic parts. Using synthetic biology, scientists are testing models of how biology works by building systems based on models and measuring differences between expectation and observation. Second, the idea arose that, to some, biology is an extension of chemistry and thus synthetic biology is an extension of synthetic chemistry. Attempts to manipulate living systems at the molecular level will likely lead to a better understanding, and new types, of biological components and systems. Third is the concept that natural living systems have evolved to continue to exist, rather than being optimized for human understanding and intention. By thoughtfully redesigning natural living systems it is possible to simultaneously test our current understanding, and may become possible to implement engineered systems that are easier to study and interact with. Fourth, the idea emerged that biology can be used as a technology, and that biotechnology can be broadly redefined to include the engineering of integrated biological systems for the purposes of processing information, producing energy, manufacturing chemicals, and fabricating materials.
While the emergence of the discipline of synthetic biology is motivated by these agendas, progress towards synthetic biology has only been made practical by the more recent advent of two foundational technologies, DNA sequencing and synthesis. Sequencing has increased our understanding of the components and organization of natural biological systems and synthesis has provided the ability to begin to test the designs of new, synthetic biological parts and systems. While these examples each individually demonstrate the incredible potential of synthetic biology, they also illustrate that many foundational scientific and engineering challenges must be solved in order to make the engineering of biology routine. Progress on these foundational challenges requires the work of many investigators via a coordinated and constructive international effort.
Cell Factory: Rational approaches to modifying cells to make molecules of interest are of substantial economic and scientific interest. Most of these efforts aim at the production of native metabolites, expression of heterologous biosynthetic pathways, or protein expression. Reviews of these topics have largely focused on individual strategies or cell types, but collectively they fall under the broad umbrella of a growing field known as cell factory engineering.