Music, asked by aayshak1975, 1 month ago

what is mode in Guitar ?

Answers

Answered by neeruagarwal88
2

Answer:

Modes are scales derived from a parent scale. All 7 modes have the same notes as the parent scale, but start on a different note, which defines the tonal center.

Explanation:

Hope it helps...

Answered by ItzzSnake
1

★ ═════════════════════ ★

\sf 2^x=216\ \qquad 3^y=216

Applying logarithm on both sides ,

\\ \longrightarrow \sf \log (2^x) = \log (216)\ \quad \log (3^y)= \log (216) \\

\longrightarrow \sf \log (2^x) = \log (6^3)\ \quad \log (3^y)= \log (6^3)

\boxed{ \bullet\ \; \sf \red{\log a^b = b\ \log a}}

\longrightarrow \sf x \log 2 = 3 \log 6\ \quad y \log 3= 3 \log 6

\longrightarrow \sf x  = \dfrac{3 \log 6}{ \log 2}\ \quad y = \dfrac{3 \log 6}{ \log 3}

\longrightarrow \sf \purple{\dfrac{1}{x}  = \dfrac{ \log 2}{ 3 \log 6}\ \; ; \quad \dfrac{1}{y} = \dfrac{ \log 3}{ 3 \log 6}}

Our required value ,

:\implies \sf \dfrac{1}{x}+\dfrac{1}{y}

:\implies \sf \dfrac{ \log 2}{3 \log 6}+\dfrac{\log 3}{3 \log 6}

:\implies \sf \dfrac{ \log 2 + \log 3}{3 \log 6}

\boxed{ \bullet\ \; \sf \red{\log a + \log b = \log ab}}

:\implies \sf \dfrac{ \log (2.3)}{3 \log 6}

:\implies \sf \dfrac{ \log 6}{3 \log 6}

:\implies \sf \dfrac{ 1 }{ 3 }\ \; \bigstar

\boxed{\sf \dagger\ \; \; \pink{ \dfrac{\textsf{\textbf{1}}}{\textsf{\textbf{x}}} + \dfrac{\textsf{\textbf{1}}}{\textsf{\textbf{y}}} = \dfrac{\textsf{\textbf{1}}}{\textsf{\textbf{3}}} }}

★ ═════════════════════ ★

Shortcut :

\sf 2^x = 3^y = 216

\sf \to 2 = (216)^{\frac{1}{x}}\ \; \; \& \; \; \; 3 = (216)^{\frac{1}{y}}

Multiply both the equations ,

\to \sf 6 = (216)^{\frac{1}{x}+\frac{1}{y}}

\to \sf 6 = (6)^{3 \left( \frac{1}{x}+\frac{1}{y} \right) }

\sf \to 1 = 3 \left( \dfrac{1}{x} + \dfrac{1}{y} \right)

\sf \longrightarrow  \dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{3}

Similar questions