Physics, asked by kishu6331, 5 months ago

what is ohm's law ?



.................................................................................

Answers

Answered by trilakshitha
2

Answer:

Ohm's law

This article is about the law related to electricity. For other uses, see Ohm's acoustic law.

Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance,[1] one arrives at the usual mathematical equation that describes this relationship:[2]

V, I, and R, the parameters of Ohm's law

where I is the current through the conductor in units of amperes, V is the voltage measured across the conductor in units of volts, and R is the resistance of the conductor in units of ohms. More specifically, Ohm's law states that the R in this relation is constant, independent of the current.[3] Ohm's law is an empirical relation which accurately describes the conductivity of the vast majority of electrically conductive materials over many orders of magnitude of current. However some materials do not obey Ohm's law, these are called non-ohmic.

The law was named after the German physicist Georg Ohm, who, in a treatise published in 1827, described measurements of applied voltage and current through simple electrical circuits containing various lengths of wire. Ohm explained his experimental results by a slightly more complex equation than the modern form above (see § History below).

In physics, the term Ohm's law is also used to refer to various generalizations of the law; for example the vector form of the law used in electromagnetics and material science:

where J is the current density at a given location in a resistive material, E is the electric field at that location, and σ (sigma) is a material-dependent parameter called the conductivity. This reformulation of Ohm's law is due to Gustav Kirchhoff.[4]

History

Georg Ohm

In January 1781, before Georg Ohm's work, Henry Cavendish experimented with Leyden jars and glass tubes of varying diameter and length filled with salt solution. He measured the current by noting how strong a shock he felt as he completed the circuit with his body. Cavendish wrote that the "velocity" (current) varied directly as the "degree of electrification" (voltage). He did not communicate his results to other scientists at the time,[5] and his results were unknown until Maxwell published them in 1879.[6]

Francis Ronalds delineated "intensity" (voltage) and "quantity" (current) for the dry pile—a high voltage source—in 1814 using a gold-leaf electrometer. He found for a dry pile that the relationship between the two parameters was not proportional under certain meteorological conditions.[7][8]

Ohm did his work on resistance in the years 1825 and 1826, and published his results in 1827 as the book Die galvanische Kette, mathematisch bearbeitet ("The galvanic circuit investigated mathematically").[9] He drew considerable inspiration from Fourier's work on heat conduction in the theoretical explanation of his work. For experiments, he initially used voltaic piles, but later used a thermocouple as this provided a more stable voltage source in terms of internal resistance and constant voltage. He used a galvanometer to measure current, and knew that the voltage between the thermocouple terminals was proportional to the junction temperature. He then added test wires of varying length, diameter, and material to complete the circuit. He found that his data could be modeled through the equation

where x was the reading from the galvanometer, l was the length of the test conductor, a depended on the thermocouple junction temperature, and b was a constant of the entire setup. From this, Ohm determined his law of proportionality and published his results.

Internal resistance model

In modern notation we would write,

where is the open-circuit emf of the thermocouple, is the internal resistance of the thermocouple and

is the resistance of the test wire. In terms of the length of the wire this becomes,

where

is the resistance of the test wire per unit length. Thus, Ohm's coefficients are,

Explanation:

Hi Kishu unnie..

Hope it helps you..

Attachments:
Answered by mqureshi49921
1

Explanation:

Ohm's law states that the current through a conductor is proportional to the voltage across the conductor.

The ohm is defined as an electrical resistance between two points of a conductor when a constant potential difference of one volt, applied to these points, produces in the conductor a current of one ampere, the conductor not being the seat of any electromotive force.

Ohm's Law is a formula used to calculate the relationship between voltage, current and resistance in an electrical circuit. To students of electronics, Ohm's Law (E = IR) is as fundamentally important as Einstein's Relativity equation (E = mc²) is to physicists.

MAY THIS HELPS YOU

Attachments:
Similar questions