What is one important benefit of genetic engineering?
anirudhkatiyar66:
only in 1 points
Answers
Answered by
13
Genetically modified (GM) crops have many potential advantages in terms of raising agriculturalproductivity and reducing the need for (environmentally harmful) pesticides. They might also pose hazards to human health, from toxicity and increased risk of allergies, for example.
Answered by
4
please mark it as brainlist answer
Genetically modified (GM) crops have many potential advantages in terms of raising agricultural productivity and reducing the need for (environmentally harmful) pesticides. They might also pose hazards to human health, from toxicity and increased risk of allergies, for example. However, particularly in Europe, regulations designed to ensure adequate safety of GM technologies may go too far.
Plant genetic engineering methods were developed over 30 years ago, and since then, genetically modified (GM) crops have become commercially available and widely adopted. In 2009, GM crops were being grown on 10 percent of the Earth’s arable land.
In these plants, one or more genes coding for desirable traits have been inserted. The genes may come from the same or another plant species, or from totally unrelated organisms. The traits targeted through genetic engineering are often the same as those pursued by conventional breeding. However, because genetic engineering allows for direct gene transfer across species boundaries, some traits that were previously difficult or impossible to breed can now be developed with relative ease.
Genetically modified (GM) crops have many potential advantages in terms of raising agricultural productivity and reducing the need for (environmentally harmful) pesticides. They might also pose hazards to human health, from toxicity and increased risk of allergies, for example. However, particularly in Europe, regulations designed to ensure adequate safety of GM technologies may go too far.
Plant genetic engineering methods were developed over 30 years ago, and since then, genetically modified (GM) crops have become commercially available and widely adopted. In 2009, GM crops were being grown on 10 percent of the Earth’s arable land.
In these plants, one or more genes coding for desirable traits have been inserted. The genes may come from the same or another plant species, or from totally unrelated organisms. The traits targeted through genetic engineering are often the same as those pursued by conventional breeding. However, because genetic engineering allows for direct gene transfer across species boundaries, some traits that were previously difficult or impossible to breed can now be developed with relative ease.
Similar questions