What is OTEC ? What and How Geothermal energy works ?
Answers
Answered by
2
Ocean thermal energy conversion (OTEC)
uses the temperature difference between cooler deep and warmer shallow
or surface seawaters to run a heat engine and produce useful work, usually in the form of electricity. ... The most commonly used heat cycle for OTEC to date is the Rankine cycle, using a low-pressure turbine.
Answered by
3
Ocean thermal energy conversion (OTEC) uses the temperature difference between cooler deep and warmer shallow or surface seawaters to run a heat engine and produce useful work, usually in the form of electricity
OTEC uses the ocean’s warm surface water with a temperature of around 25°C (77°F) to vaporize a working fluid, which has a low-boiling point, such as ammonia. The vapor expands and spins a turbine coupled to a generator to produce electricity. The vapor is then cooled by seawater that has been pumped from the deeper ocean layer, where the temperature is about 5°C (41°F). That condenses the working fluid back into a liquid, so it can be reused. This is a continuous electricity generating cycle.
The efficiency of the cycle is strongly determined by the temperature differential. The bigger the temperature difference, the higher the efficiency. The technology is therefore viable primarily in equatorial areas where the year-round temperature differential is at least 20 degrees Celsius or 36 degrees Fahrenheit.
OTEC uses the ocean’s warm surface water with a temperature of around 25°C (77°F) to vaporize a working fluid, which has a low-boiling point, such as ammonia. The vapor expands and spins a turbine coupled to a generator to produce electricity. The vapor is then cooled by seawater that has been pumped from the deeper ocean layer, where the temperature is about 5°C (41°F). That condenses the working fluid back into a liquid, so it can be reused. This is a continuous electricity generating cycle.
The efficiency of the cycle is strongly determined by the temperature differential. The bigger the temperature difference, the higher the efficiency. The technology is therefore viable primarily in equatorial areas where the year-round temperature differential is at least 20 degrees Celsius or 36 degrees Fahrenheit.
Similar questions