Social Sciences, asked by itzurjen, 1 month ago

What is oxygen?
.
.
itzsmartboy bhot acche acche shayri maar lete ho mere liye koi to hogi??​

Answers

Answered by arafatmgr
0

Oxygen a type a gas. It helps us live.

Please mark my answer as BRAINLIEST.

Thank you.

Answered by abhisheksingh7952
0

\huge\mathfrak\red{ANSWER}</p><p>

Ozone is a powerful oxidizing agent, capable of converting sulfur dioxide to sulfur trioxide, sulfides to sulfates, iodides to iodine (providing an analytical method for its estimation), and many organic compounds to oxygenated derivatives such as aldehydes and acids. The conversion by ozone of hydrocarbons from automotive exhaust gases to these acids and aldehydes contributes to the irritating nature of smog. Commercially, ozone has been used as a chemical reagent, as a disinfectant, in sewage treatment, water purification, and bleaching textiles.

Preparative methods

Production methods chosen for oxygen depend upon the quantity of the element desired. Laboratory procedures include the following:

1. Thermal decomposition of certain salts, such as potassium chlorate or potassium nitrate:

Chemical equations.

The decomposition of potassium chlorate is catalyzed by oxides of transition metals; manganese dioxide (pyrolusite, MnO2) is frequently used. The temperature necessary to effect the evolution of oxygen is reduced from 400 °C to 250 °C by the catalyst.

2. Thermal decomposition of oxides of heavy metals:

Chemical equations.

Scheele and Priestley used mercury(II) oxide in their preparations of oxygen.

3. Thermal decomposition of metal peroxides or of hydrogen peroxide:

Chemical equations.

An early commercial procedure for isolating oxygen from the atmosphere or for manufacture of hydrogen peroxide depended on the formation of barium peroxide from the oxide as shown in the equations.

4. Electrolysis of water containing small proportions of salts or acids to allow conduction of the electric current:

Chemical equation.

Commercial production and use

When required in tonnage quantities, oxygen is prepared by the fractional distillation of liquid air. Of the main components of air, oxygen has the highest boiling point and therefore is less volatile than nitrogen and argon. The process takes advantage of the fact that when a compressed gas is allowed to expand, it cools. Major steps in the operation include the following: (1) Air is filtered to remove particulates; (2) moisture and carbon dioxide are removed by absorption in alkali; (3) the air is compressed and the heat of compression removed by ordinary cooling procedures; (4) the compressed and cooled air is passed into coils contained in a chamber; (5) a portion of the compressed air (at about 200 atmospheres pressure) is allowed to expand in the chamber, cooling the coils; (6) the expanded gas is returned to the compressor with multiple subsequent expansion and compression steps resulting finally in liquefaction of the compressed air at a temperature of −196 °C; (7) the liquid air is allowed to warm to distill first the light rare gases, then the nitrogen, leaving liquid oxygen. Multiple fractionations will produce a product pure enough (99.5 percent) for most industrial purposes.

The steel industry is the largest consumer of pure oxygen in “blowing” high carbon steel—that is, volatilizing carbon dioxide and other nonmetal impurities in a more rapid and more easily controlled process than if air were used. The treatment of sewage by oxygen holds promise for more efficient treatment of liquid effluents than other chemical processes. Incineration of wastes in closed systems using pure oxygen has become important. The so-called LOX of rocket oxidizer fuels is liquid oxygen; the consumption of LOX depends upon the activity of space programs. Pure oxygen is used in submarines and diving bells.

Commercial oxygen or oxygen-enriched air has replaced ordinary air in the chemical industry for the manufacture of such oxidation-controlled chemicals as acetylene, ethylene oxide, and methanol. Medical applications of oxygen include use in oxygen tents, inhalators, and pediatric incubators. Oxygen-enriched gaseous anesthetics ensure life support during general anesthesia. Oxygen is significant in a number of industries that use kilns.

Chemical properties and reactions

The large values of the electronegativity and the electron affinity of oxygen are typical of elements that show only nonmetallic behaviour. In all of its compounds, oxygen assumes a negative oxidation state as is expected from the two half-filled outer orbitals. When these orbitals are filled by electron transfer, the oxide ion O2− is created. In peroxides (species containing the ion O22−) it is assumed that each oxygen has a charge of −1. This property of accepting electrons by complete or partial transfer defines an oxidizing agent. When such an agent reacts with an electron-donating substance, its own oxidation state is lowered. The change (lowering), from the zero to the −2 state in the case of oxygen, is called a reduction. Oxygen may be thought of as the “original” oxidizing agent, the nomenclature used to describe oxidation and reduction being based upon this behaviour typical of oxygen.

\huge\mathfrak\red{thank you}</p><p>

.

Similar questions