Math, asked by gaurideokar2003, 3 months ago

what is range of matrix A ??​

Attachments:

Answers

Answered by mathdude500
1

\begin{gathered}\tt A=\left[\begin{array}{ccc}1&sinx&1\\ - sinx&1&sinx\\1&-sinx&1\end{array}\right]\end{gathered}

:\implies \tt \:   |A|  = \begin{array}{|ccc|}</p><p>1 &amp; sinx &amp; 1 \\</p><p>-sinx &amp; 1 &amp; sinx  \\</p><p>1 &amp;-sinx &amp; 1\\</p><p>\end{array}

:\implies \tt \:   |A|  = 1(1 +  {sin}^{2} x) - sinx( - sinx - sinx) + 1( {sin}^{2} x - 1)

:\implies \tt \:   |A|  = 1 +  {sin}^{2} x + 2 {sin}^{2} x +  {sin}^{2} x - 1

:\implies \tt \:   |A|  = 4 {sin}^{2} x

Hence, Two cases arises,

Case 1

:\implies \tt \:  when \: x \:  \ne \: n\pi

:\implies \tt \:   |A|  \:  \ne \: 0

:\implies  \boxed{ \pink{\tt \:  Range \:  of   \: matrix\: A \:  is \: 3}}

Case 2

:\implies \tt \:  when \: x \:  =  \: n\pi

:\implies \tt \:   |A|  =  {sin}^{2} n\pi \:  = 0

:\implies \tt \:  Range  \: of  \: A \:  \ne \: 3

Consider submatrix of order 2 × 2,

\begin{vmatrix} 1 &amp; sinx \\  - sinx &amp; 1 \end{vmatrix}

:\implies \tt \:  1 +  {sin}^{2} x

:\implies \tt \:  1 +  {sin}^{2} n\pi

:\implies \tt \:  1 + 0

:\implies \tt \:  1 \:  \ne \: 0

:\implies  \boxed{ \pink{\tt \:  Range \:  of   \: matrix\: A \:  is \: 2}}

\begin{gathered}\begin{gathered}\bf Range \:  of   \: matrix\: A \:  is -  \begin{cases} &amp;\sf{3 \: if \: x \:  \ne \: n\pi} \\ &amp;\sf{2 \: if \: x \:  =  \: n\pi} \end{cases}\end{gathered}\end{gathered}

Similar questions