Chemistry, asked by bhumika820, 1 year ago

what is resonance and structure

Answers

Answered by sumanththescientist
1
In chemistry, resonance or mesomerism[1] is a way of describing delocalized electrons within certain molecules or polyatomic ions where the bonding cannot be expressed by one single Lewis structure. A molecule or ion with such delocalized electrons is represented by several contributing structures (or forms)[2] (also variously known as resonance structures (or forms), canonical structures, or, in older works or translations, mesomers), which collectively constitute a resonance hybrid. (The concept of a resonance hybrid is unrelated to orbital hybridization.)

Under the framework of valence bond theory, resonance is an extension of the idea that the bonding in a chemical species can be described by a Lewis structure. For many chemical species, a single Lewis structure, consisting of atoms obeying the octet rule, possibly bearing formal charges, and connected by bonds of positive integer order, is sufficient for describing the chemical bonding and rationalizing experimentally determined molecular properties like bond lengths, angles, and dipole moment.[3] However, in some cases, more than one Lewis structure could be drawn, and experimental properties are inconsistent with any one structure. In order to address this type of situation, several resonance structures are considered together as an average, and the molecule is said to be represented by a resonance hybrid in which several Lewis structures are used collectively to describe its true structure. For instance, in NO2–, nitrite anion, the two N–O bond lengths are equal, even though no single Lewis structure has two N–O bonds with the same formal bond order. However, its measured structure is consistent with a description as a resonance hybrid of the two major contributing structures shown above: it has two equal N–O bonds of 125 pm, intermediate in length between a typical N–O single bond (145 pm in hydroxylamine, H2N–OH) and N–O double bond (115 pm in nitronium ion, [O=N=O]+). According to the contributing structures, each N–O bond is an average of a formal single and formal double bond, leading to a true bond order of 1.5. By virtue of this averaging, the Lewis description of the bonding in NO2– is reconciled with the experimental fact that the anion has equivalent N–O bonds.

As suggested by this example, individual Lewis structures of a resonance hybrid are hypothetical mental constructs, and the molecular geometry and properties implied by each structure standing alone do not correspond to any real chemical species. To correctly interpret the molecular structure described by a resonance hybrid, all significant contributors of the resonance hybrid must be considered together, since the hybrid represents the actual molecule as their "average," with bond lengths and other structural parameters taking on intermediate values compared to those expected for the individual Lewis structures of the contributors, were they to exist as "real" chemical entities.[4] The contributing structures differ only in the formal apportionment of electrons to the atoms, and not in the actual physically and chemically significant electron or spin density. While contributing structures will differ in formal bond orders and, possibly, in formal charge assignments, the contributing structures of a resonance hybrid all represent a single chemical species. In particular, each contributing structure represents the same molecular geometry (position of atomic nuclei) and electron/spin distribution.[5]

Because electron delocalization lowers the potential energy of a system, any species represented by a resonance hybrid is more stable than any of the (hypothetical) contributing structures. The difference in potential energy between the actual species and the (computed) energy of the contributing structure with the lowest potential energy is called the resonance energy[6] or delocalization energy. The magnitude of the resonance energy depends on assumptions made about the hypothetical "non-stabilized"
Attachments:

bhumika820: thnxc lovely guyyy
sumanththescientist: you're welcome beauty
bhumika820: oh my pleasure
jiyaandaanchal: thanks dear for mark me as a brainlist.
jiyaandaanchal: thank you so much. Dear. Sis
Answered by jiyaandaanchal
0
Hope it will help you.
Attachments:
Similar questions