Math, asked by mohammedfurqan65, 1 year ago

what is root of 1+cos theta/1-cos theta

Answers

Answered by Anonymous
3

 \sqrt{ \frac{1 +  \cos( \alpha ) }{1 -  \sin( \alpha ) } }  \\  \sqrt{ \frac{2 { \cos(  \frac{ \alpha }{2} ) }^{2} }{2  \sin( \frac{ \alpha }{2}) } }  \\  \tan(  \frac{ \alpha }{2} )

since \: we \: know \: that \:  \\ 1 +  \cos( \alpha )  = 2 { \cos(  \frac{ \alpha }{2} ) }^{2}  \\ 1 -  \cos( \alpha )  = 2 { \sin( \frac{ \alpha }{2} ) }^{2}

Answered by Anonymous
5

Step-by-step explanation:

using formula ,

1+\cos(\alpha ) = 2\ \cos{}^{2} (\frac{ \alpha }{2} )

1-\cos(\alpha )=2\sin {}^{2} ( \frac{ \alpha }{2} )

Now ,

we have to find the value of

 \sqrt{ \frac{1 +  \cos( \alpha ) }{1 -  \cos( \alpha ) } }

 =>  \:  \sqrt{ \frac{2 \cos {}^{2} ( \frac{ \alpha }{2} ) }{2 \sin {}^{2} ( \frac{ \alpha }{2} ) } }

 =>  \:  \cot( \frac{ \alpha }{2} )

Similar questions