Math, asked by aminahanif0300, 2 months ago

what is solution of congruence ,3x=4 mode 7​

Answers

Answered by shadowsabers03
2

We're asked to find the solution of,

\longrightarrow 3x\equiv4\pmod{7}

Then let,

\longrightarrow 3x=4+7a,\quad a\in\mathbb{Z}\quad\quad\dots(1)

Here the least coefficient appears is 3 (ignoring constant term). Then take,

\longrightarrow 3x\equiv4+7a\pmod{3}\quad\quad\dots(2)

But we see that,

  • 3\equiv0\pmod{3}
  • 4\equiv1\pmod{3}
  • 7\equiv1\pmod{3}

Then (2) becomes,

\longrightarrow 0\equiv1+a\pmod{3}

\longrightarrow a\equiv-1\pmod{3}

Since -1\equiv2\pmod{3},

\longrightarrow a\equiv2\pmod{3}

Here the coefficient of a is 1 itself. Then let,

\longrightarrow a=3k+2,\quad k\in\mathbb{Z}

Then (1) becomes,

\longrightarrow 3x=4+7(3k+2)

\longrightarrow 3x=21k+18

\longrightarrow\underline{\underline{x=7k+6}}

This is the solution of the equation.

Answered by Anonymous
3

\huge{\underline{\underline{\mathrm{\red{AnswEr}}}}}

We're asked to find the solution of,

\longrightarrow 3x\equiv4\pmod{7}

Then let,

\longrightarrow 3x=4+7a,\quad a\in\mathbb{Z}\quad\quad\dots(1)

Here the least coefficient appears is 3 (ignoring constant term). Then take,

\longrightarrow 3x\equiv4+7a\pmod{3}\quad\quad\dots(2)

But we see that,

3\equiv0\pmod{3}

4\equiv1\pmod{3}

7\equiv1\pmod{3}

Then (2) becomes,

\longrightarrow 0\equiv1+a\pmod{3}

\longrightarrow a\equiv-1\pmod{3}

Since -1\equiv2\pmod{3},

\longrightarrow a\equiv2\pmod{3}

Here the coefficient of a is 1 itself. Then let,

\longrightarrow a=3k+2,\quad k\in\mathbb{Z}

Then (1) becomes,

\longrightarrow 3x=4+7(3k+2)

\longrightarrow 3x=21k+18

\longrightarrow\underline{\underline{x=7k+6}}

This is the solution of the equation.

Similar questions