Math, asked by Ramavtar4971, 29 days ago

What is square root of 625/144

Answers

Answered by mathdude500
66

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: \sqrt{\dfrac{625}{144} }

So, to find this squareroot, let we first find the prime factorization of 144 and 625.

Consider,

 \red{\bf :\longmapsto\:Prime \: factorization \: of \: 625}

 \red{\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{5}}}&{\underline{\sf{\:\:625 \:\:}}}\\ {\underline{\sf{5}}}& \underline{\sf{\:\:125 \:\:}} \\\underline{\sf{5}}&\underline{\sf{\:\:25\:\:}}  \\ {\underline{\sf{5}}}& \underline{\sf{\:\:5 \:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}}

Hence,

 \red{\bf :\longmapsto\:Prime \: factorization \: of \: 625 = 5 \times 5 \times 5 \times 5}

Now, Consider

 \green{\bf :\longmapsto\:Prime \: factorization \: of \: 144}

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:144 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:72 \:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:36\:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\: \: 18 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:9 \:\:}}  \\ {\underline{\sf{3}}}& \underline{\sf{\:\:3 \:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}

Hence,

 \green{\bf :\longmapsto\:Prime \: factorization \: of \: 144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3}

Therefore,

 \purple{\rm :\longmapsto\: \sqrt{\dfrac{625}{144} } }

 \purple{\rm  \:  = \: \sqrt{\dfrac{ \underbrace{5 \times 5} \times \underbrace{5 \times 5}}{\underbrace{2 \times 2} \times \underbrace{2 \times 2} \times \underbrace{3 \times 3}} } }

 \purple{\rm \:  =  \:\dfrac{5 \times 5}{2 \times 2 \times 3} }

 \purple{\rm \:  =  \:\dfrac{25}{12} }

Thus,

 \pink{\bf\implies \:\boxed{ \tt{ \:  \sqrt{ \frac{625}{144} } =  \frac{25}{12} \:  \: }}}

Answered by XxitsmrseenuxX
1

Answer:

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: \sqrt{\dfrac{625}{144} }

So, to find this squareroot, let we first find the prime factorization of 144 and 625.

Consider,

 \red{\bf :\longmapsto\:Prime \: factorization \: of \: 625}

 \red{\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{5}}}&{\underline{\sf{\:\:625 \:\:}}}\\ {\underline{\sf{5}}}& \underline{\sf{\:\:125 \:\:}} \\\underline{\sf{5}}&\underline{\sf{\:\:25\:\:}}  \\ {\underline{\sf{5}}}& \underline{\sf{\:\:5 \:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}}

Hence,

 \red{\bf :\longmapsto\:Prime \: factorization \: of \: 625 = 5 \times 5 \times 5 \times 5}

Now, Consider

 \green{\bf :\longmapsto\:Prime \: factorization \: of \: 144}

\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:144 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:72 \:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:36\:\:}} \\ {\underline{\sf{2}}}& \underline{\sf{\: \: 18 \:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:9 \:\:}}  \\ {\underline{\sf{3}}}& \underline{\sf{\:\:3 \:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}

Hence,

 \green{\bf :\longmapsto\:Prime \: factorization \: of \: 144 = 2 \times 2 \times 2 \times 2 \times 3 \times 3}

Therefore,

 \purple{\rm :\longmapsto\: \sqrt{\dfrac{625}{144} } }

 \purple{\rm  \:  = \: \sqrt{\dfrac{ \underbrace{5 \times 5} \times \underbrace{5 \times 5}}{\underbrace{2 \times 2} \times \underbrace{2 \times 2} \times \underbrace{3 \times 3}} } }

 \purple{\rm \:  =  \:\dfrac{5 \times 5}{2 \times 2 \times 3} }

 \purple{\rm \:  =  \:\dfrac{25}{12} }

Thus,

 \pink{\bf\implies \:\boxed{ \tt{ \:  \sqrt{ \frac{625}{144} } =  \frac{25}{12} \:  \: }}}

Similar questions