Math, asked by Anonymous, 1 year ago

what is sum of series 1+2^2+3^2+4^2+5^2+......+infinity

Answer must be in numerical value not formula 1/6 n (n+1)(2n+1).

Hint: As sum of infinity GP is a / 1 - r

Here the difference is in A.P. we have find numerical value of the series only.

Answers

Answered by sayantanbasu8p6pkr2
2

Answer:

In this GP, if we put infinity in the place of n in the formula for calculating the sum of this GP, (1^2+2^2+3^2+....+infinity)

The answer will be infinity itself .

Please mark the answer Brainliest!!

Answered by BendingReality
29

Answer:

Let :

S_R = 1² + 2² + 3² + 4² + 5² + 6² + 7² + ...............

Let us take other series :

S₁ = 1² - 2² + 3² - 4² + 5² - 6² + 7² - 8² + .........

# Only applicable when number of terms are even .

Now using :

a² - b² = ( a + b ) ( a - b )

Taking two pair of even and odd term :

S₁ = ( 1 - 2 ) ( 1 + 2 ) + ( 3 - 4 ) ( 3 + 4 ) + ( 5 - 6 ) ( 5 + 6 ) + ( 7 - 8 ) ( 7 + 8 ) .......

= > S₁ = ( - 1 × 3 ) + ( - 1 × 7 ) + ( - 1 × 11 ) + ( -1 × 15 ) + ...........

Taking out - 1 as common :

= > S₁ = - 1 ( 3 + 7 + 11 + 15 +  ......... )

Now rewriting 3 as 1 + 2 , 7 as 3 + 4 , 11 as 5 + 6 and so on

= > S₁ = - 1 ( 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + ......... )

From Ramanujan series for sum of infinite natural number we know :

1 + 2 + 3 + 4 + 5 + 6 + 7 + ..................... = - 1 / 12

Using this value we get :

= > S₁ = - 1 ( - 1 / 12 )

= > S₁ = 1 / 12 .

Now subtracting S₁ series from S_R i.e.  S_R -  S₁

S_R = 1² + 2² + 3² + 4² + 5² + 6² + 7² + 8² ...............

S₁ = 1² - 2² + 3² - 4² + 5² - 6² + 7² - 8² + ..............

-         +            +             +          +                                

S_R - S₁ = 8 + 32 + 72 + 128 + ..................

Take out 8 common we get :

S_R - S₁ = 8 ( 1 + 4 + 9 + 16 + .................. )

Rewrite 1 , 4 , 9 , 16 and so on as 1² , 2² , 3² 4² so on

S_R - S₁ = 8 (  1² + 2² + 3² + 4² + ...................... )

But S_R =  1² + 2² + 3² + 4² + .....................

Replacing value by S_R

S_R  - S₁ = 8 S_R

8 S_R - S_R = - S₁

7 S_R = - S₁

We have value of S₁ , putting here :

i.s. S₁ = 1 / 12

7 S_R = - 1 / 12

S_R = - 1 / ( 12 × 7 )

S_R = - 1 / 84

Therefore we get value of S_R :

S_R = 1² + 2² + 3² + 4² + 5² + 6² + 7² + ...............  = - 1 / 84 .


Anonymous: awsome bro !
Similar questions