What is temperature scales?give two examples.first answer will be awarded brainliest!!
Answers
Answer:
Scale of temperature is a methodology of calibrating the physical quantity temperature in metrology.
the example are calcius scale, rankine scale, Kelvin scale.
Explanation:
Scale of temperature is a methodology of calibrating the physical quantity temperature in metrology. Empirical scales measure temperature in relation to convenient and stable parameters, such as the freezing and boiling point of water. Absolute temperature is based on thermodynamic principles, using the lowest possible temperature as the zero point and selecting a convenient incremental unit.
Definition Edit
The zeroth law of thermodynamics describes thermal equilibrium between thermodynamic systems in form of an equivalence relation. Accordingly, all thermal systems may be divided into a quotient set, denoted as M. If the set M has the cardinality of c, then one can construct an injective function ƒ: M → R , by which every thermal system has a parameter associated with it such that when two thermal systems have the same value of that parameter, they are in thermal equilibrium. This parameter is the property of temperature. The specific way of assigning numerical values for temperature is establishing a scale of temperature.[1][2][3] In practical terms, a temperature scale is always based on usually a single physical property of a simple thermodynamic system, called a thermometer, that defines a scaling function for mapping the temperature to the measurable thermometric parameter. Such temperature scales that are purely based on measurement are called empirical temperature scales.
The second law of thermodynamics provides a fundamental, natural definition of thermodynamic temperature starting with a null point of absolute zero. A scale for thermodynamic temperature is established similarly to the empirical temperature scales, however, needing only one additional fixing point.
Empirical scales Edit
Empirical scales are based on the measurement of physical parameters that express the property of interest to be measured through some formal, most commonly a simple linear, functional relationship. For the measurement of temperature, the formal definition of thermal equilibrium in terms of the thermodynamic coordinate spaces of thermodynamic systems, expressed in the zeroth law of thermodynamics, provides the framework to measure temperature.
All temperature scales, including the modern thermodynamic temperature scale used in the International System of Units, are calibrated according to thermal properties of a particular substance or device. Typically, this is established by fixing two well-defined temperature points and defining temperature increments via a linear function of the response of the thermometric device. For example, both the old Celsius scale and Fahrenheit scale were originally based on the linear expansion of a narrow mercury column within a limited range of temperature,[4] each using different reference points and scale increments.
Different empirical scales may not be compatible with each other, except for small regions of temperature overlap. If an alcohol thermometer and a mercury thermometer have same two fixed points, namely the freezing and boiling point of water, their reading will not agree with each other except at the fixed points, as the linear 1:1 relationship of expansion between any two thermometric substances may not be guaranteed.
Empirical temperature scales are not reflective of the fundamental, microscopic laws of matter. Temperature is a universal attribute of matter, yet empirical scales map a narrow range onto a scale that is known to have a useful functional form for a particular application. Thus, their range is limited. The working material only exists in a form under certain circumstances, beyond which it no longer can serve as a scale. For example, mercury freezes below 234.32 K, so temperature lower than that cannot be measured in a scale based on mercury. Even ITS-90, which interpolates among different ranges of temperature, has only a range of 0.65 K to approximately 1358 K (−272.5 °C to 1085 °C).
.