Math, asked by Anonymous, 10 months ago

what is
lim(n -  >  \infty ) \:\frac{(2n - 1) ^{2}}{n^{2} }

Answers

Answered by BrainlyTornado
5

ANSWER:

 \boxed{ \boxed{ \large{\bold{\lim_{n \to\infty}\:\frac{(2n - 1) ^{2}}{n^{2} } = 4}}}}

GIVEN:

 \displaystyle \lim_{n \to\infty}\:\frac{(2n - 1) ^{2}}{n^{2} }

TO FIND:

The \:  \: value \:  \: of \:  \displaystyle \lim_{n \to\infty}\:\frac{(2n - 1) ^{2}}{n^{2} }

EXPLANATION:

 \displaystyle \lim_{n \to\infty}\:\frac{(2n - 1) ^{2}}{n^{2} }

 \displaystyle \lim_{n \to\infty}\: \bigg({\frac{2n - 1}{n }} \bigg)^{2}

 \displaystyle \lim_{n \to\infty}\: \bigg({\frac{2n}{n } -  \frac{1}{n} } \bigg)^{2}

 \displaystyle \lim_{n \to\infty}\: \bigg({\frac{2 \cancel{n}}{\cancel{n }} -  \frac{1}{n} } \bigg)^{2}

 \left(2   - \dfrac{1}{ \dfrac{1}{0} }  \right)^{2}

 \boxed{ \boxed{ \large {\bold{ \because \infty =  \frac{1}{0} }}}}

 \boxed{ \boxed{ \large {\bold{  \frac{1}{ \frac{1}{0} } = 0 }}}}

 {(2 - 0)}^{2}

 {2}^{2}  = 4

 \boxed{ \boxed{ \large{\bold{\lim_{n \to\infty}\:\frac{(2n - 1) ^{2}}{n^{2} } = 4}}}}

Similar questions