Physics, asked by jhalakredhu, 4 days ago

What is the (a) highest (b) lowest total resistance, that can be secured by combinations of four coils of resistances 2 ohm 10 ohm 14 ohm 6 ohm

Answers

Answered by bhavaniv9802
0

Answer:

Ans: Given resistances R1 =4 Ω, R2=8 Ω, R3=12Ω, and R4=24Ω.

(a) If these coils are connected in series, then the equivalent resistance will

be the highest, as R=R1+R2+R3+R4

∴ R=4+8+12+24 = 24Ω

(b) If these coils are connected in parallel, then the equivalent resistance will be the lowest, given by

⇒R=2 Ω

∴ 2 Ω is the lowest total resistance

Answered by Divyaraj5920
2

Given: Combination of four coil of resistances,

            R_{1}= 2Ω

            R_{2}= 10Ω

            R_{3}= 14Ω

             R_{4}= 6Ω

To Find:  a) Highest Total Resistance

               b) Lowest Total Resistance

Solution:

a)Highest Total Resistance :-

The highest total resistance can be find by connecting all the four resistances of coil in Series combination as,

                              R_{equivalent}= R_{1} + R_{2} + R_{3} + R_{4}

Now,

By applying above equation we get,

                          R_{equivalent}= R_{1} + R_{2} + R_{3} + R_{4}

                         R_{equivalent}= 2Ω + 10Ω + 14Ω + 6Ω

                        R_{equivalent}= 32Ω

∴ The Highest Resistance by the combination of the 4 coils = 32Ω

b) Lowest Total Resistance :

The lowest total resistance can be find by connecting all the four resistances of coil in Parallel combination as,

                              \frac{1}{R_{equivalent}}= \frac{1}{R_{1} } + \frac{1}{R_{2} } + \frac{1}{R_{3} } + \frac{1}{R_{4} }

Now,

By applying above equation we get,

                               \frac{1}{R_{equivalent}}= \frac{1}{R_{1} } + \frac{1}{R_{2} } + \frac{1}{R_{3} } + \frac{1}{R_{4} }

                           \frac{1}{R_{equivalent}}= \frac{1}{2} Ω + \frac{1}{10} Ω + \frac{1}{14} Ω + \frac{1}{6} Ω

                         \frac{1}{R_{equivalent}} ≈  1.19 Ω

∴ Lowest Total Resistance by the combination of the 4 coils = 1.19 Ω

so, a)  Highest Total Resistance :- 32 Ω  

     b) Lowest Total Resistance :- ≈ 1.19 Ω

Similar questions