Physics, asked by mahanoorqureshi801, 6 months ago

What is the angle between the vectors A=6i+8j+20k and B=6i+8j+10k

Answers

Answered by ExElegant
3

\huge{\mathbb{\red{ANSWER:-}}}

A = 6i + 8j + 20k

B = 6i + 8j + 10k

A•B =(6i+8j+20k)•(6i+8j+10k)

 \: \: \: = (6*6) + (8*8) + (20*10)

 \: \: \: = (36 + 64 + 200)

 \: \: \: = 300

 |A| =\sqrt{6^2 + 8^2 + 20^2}

 \: \: =\sqrt{10^2 + 20^2}

 \: \:  =\sqrt{10^2 + 4*10^2}

 \: \: =\sqrt{5*10^2}

 \: \: = 10\sqrt{5}

 |B| =\sqrt{6^2 + 8^2 + 10^2}

 \: \: =\sqrt{10^2 + 10^2}

 \: \: =\sqrt{2*10^2}

 \: \: = 10\sqrt{2}

Now

\small\boxed{CosO=\dfrac{A • B}{|A| |B|}}

CosO =\frac{300}{10\sqrt{5} • 10\sqrt{2}}

CosO = \frac{300}{100\sqrt{10}}

π^2 = 10

CosO =\frac{3}{\sqrt{10}}=\frac{3}{π}

O = Cos^-¹(\frac{3}{π})

Similar questions