Physics, asked by krishnaveni37, 10 months ago

what is the answer ​

Attachments:

Answers

Answered by Rohit18Bhadauria
6

Given:

\longrightarrow\rm{\vec{a}+\vec{b}=\vec{c}}

\longrightarrow\rm{\vec{a}^{2}+\vec{b}^{2}=\vec{c}^{2}}---(1)

To Find:

Angle between the vectors a and b

Solution:

We know that,

  • \rm\pink{(\vec{p}+\vec{q})^{2}=\vec{p}^{2}+\vec{q}^{2}+2\vec{p}.\vec{q}}
  • \rm\purple{\vec{p}.\vec{q}=\mid\vec{p}\mid\:\mid\vec{q}\mid cos\:\theta}

where

|a| is magnitude of vector a

|b| is magnitude of vector b

θ is the angle between both vectors

\rule{190}{1}

It is given that,

\longrightarrow\rm{\vec{a}+\vec{b}=\vec{c}}

On squaring both the sides, we get

\longrightarrow\rm{(\vec{a}+\vec{b})^{2}=\vec{c}^{2}}

\longrightarrow\rm{\red{\vec{a}^{2}+\vec{b}^{2}}+2\vec{a}.\vec{b}=\vec{c}^{2}}

From (1), we get

\longrightarrow\rm{\red{\vec{c}^{2}}+2\vec{a}.\vec{b}=\vec{c}^{2}}

\longrightarrow\rm{2\vec{a}.\vec{b}=\vec{c}^{2}-\vec{c}^{2}}

\longrightarrow\rm{2\vec{a}.\vec{b}=0}

\longrightarrow\rm{\vec{a}.\vec{b}=0}

Let the angle between vectors a and b be θ

So,

\longrightarrow\rm{\vec{a}.\vec{b}=0}

\longrightarrow\rm{\mid\vec{a}\mid\:\mid\vec{b}\mid cos\:\theta=0}

\longrightarrow\rm{cos\:\theta=0}

\longrightarrow\rm{\theta=cos^{-1}(0)}

\longrightarrow\rm{\theta=90^{\circ}}

Hence, the angle between vectors a and b is 90°.

Answered by Rajshuklakld
3

Given :- a+b=c,,a^2+b^2=c^2

Solution:-Simply square both side

a^2+b^2+2ab=c^2

Putting a^2+b^2=c^2 we get

2ab=c^2-c^2

2ab=0

a.b=0

this can only be possible if angle between these two Vector=90

as

a.b=abcos∅

cos∅=0/ab=0

∅=90

So angle between them=90

Similar questions