Math, asked by sambika173, 1 month ago

what is the answer for 3x+y=13 and 2x-y=2 in graph ​

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given pair of linear equation is

\red{\rm :\longmapsto\:3x + y = 13 -  -  - (1)}

and

\red{\rm :\longmapsto\:2x  -  y = 2 -  -  - (2)}

Consider, Equation (1)

\rm :\longmapsto\:3x + y = 13

Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:3(0) + y = 13

\rm :\longmapsto \: 0 + y = 13

\rm \implies\:y = 13

Substituting 'x = 1' in the given equation, we get

\rm :\longmapsto\:3(1) + y = 13

\rm :\longmapsto\:3 + y = 13

\rm :\longmapsto\:y = 13 - 3

\rm \implies\:y = 10

Substituting 'x = 2' in the given equation, we get

\rm :\longmapsto\:3(2) + y = 13

\rm :\longmapsto\:6 + y = 13

\rm :\longmapsto\:y = 13 - 6

\rm \implies\:y = 7

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 13 \\ \\ \sf 1 & \sf 10 \\ \\ \sf 2 & \sf 7 \end{array}} \\ \end{gathered}

Consider Equation (2)

\rm :\longmapsto\:2x - y = 2

Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\:2(0) - y = 2

\rm :\longmapsto\:0 - y = 2

\rm :\longmapsto\: - y = 2

\rm \implies\:y =  - 2

Substituting 'y = 0' in the given equation, we get

\rm :\longmapsto\:2x - 0 = 2

\rm :\longmapsto\:2x = 2

\rm \implies\:x = 1

Substituting 'x = 2' in the given equation, we get

\rm :\longmapsto\:2(2) - y = 2

\rm :\longmapsto\:4- y = 2

\rm :\longmapsto\:- y = 2 - 4

\rm \implies\:y = 2

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf  - 2 \\ \\ \sf 1 & \sf 0 \\ \\ \sf 2 & \sf 2 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points

➢ See the attachment graph.

Solution of given pair of linear equations is

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:\begin{cases} &\sf{x = 3} \\ \\  &\sf{y = 4} \end{cases}\end{gathered}\end{gathered}

Attachments:
Answered by prateekmishra8600
0

Answer:

y=4

x=3

Step-by-step explanation:

this is answer please Mark me as brainleist and please started to following me to know more answer

please follow

Similar questions