What is the answer L
BRAINLIEST FOR. BRAINLIEST
Answers
Answer:
Step-by-step explanation:
Let the height of the building = AB = OC = 50 m. And
height of the tower = DC = ( DO + OC ) = x m.
Distance between tower and building = AC = BO
Angle of depression to the top of building =∠EDB = 45°
Angle of depression to bottom of building = ∠EDA = 60°
In right angle ΔDBO,
tan θ = DO / BO
tan 45° = x / BO
1 = x / BO
BO = x m.
In right angle ΔDAC,
tanθ = DC / AC
tan 60° = ( DO + OC ) / AC
√3 = ( x + 50 )/ AC
AC = ( x + 50 ) / √3
We know that BO = AC
∴ x = (x + 50) / √3
⇒√3x = x + 50
⇒√3x - x = 50
⇒ x ( √3 - 1 ) = 50
⇒ x = 50 / (√3- 1 )
= 50 (√3+ 1 ) / (√3 - 1 ) ( √3 + 1 ) (∵Rationalising the denominator )
= 50( √3 + 1 ) / ( √3)² - ( 1 )²
= 50 (√3 + 1 ) / 3 - 1
= 50 (√3 + 1 ) / 2
= 25 (√3 + 1 )
= 25√3 + 25
= 25 ( 1.73 ) + 25
= 43.25 + 25
= 68.25 m.
∴BO = AC = x = 68.25 m.
Hence, distance between building and tower= AC = 68.25 m.
∴Height of the tower = DC = DO + AC = 68.25 m + ( x + 50 / √3 ) m.
= 68.25 m + ( 68.25 + 50 / √3 ) m
= 68.25 m + ( 118 / √3 ) m
= 68.25 m + ( 118 (√3 ) / (√3)² )
= 68.25 m + ( 118 × 1.73 / 3 )
= 68.25 m + ( 204.14 / 3)
= 68.25 m + 68.04 m
= 136.29 m.
Answer:
Bro this is long but cool to slolve (AND MARK BRAINLIEST)
Step-by-step explanation:
Let the height of the building = AB = OC = 50 m. And
height of the tower = DC = ( DO + OC ) = x m.
Distance between tower and building = AC = BO
Angle of depression to the top of building =∠EDB = 45°
Angle of depression to bottom of building = ∠EDA = 60°
In right angle ΔDBO,
tan θ = DO / BO
tan 45° = x / BO
1 = x / BO
BO = x m.
In right angle ΔDAC,
tanθ = DC / AC
tan 60° = ( DO + OC ) / AC
√3 = ( x + 50 )/ AC
AC = ( x + 50 ) / √3
We know that BO = AC
∴ x = (x + 50) / √3
⇒√3x = x + 50
⇒√3x - x = 50
⇒ x ( √3 - 1 ) = 50
⇒ x = 50 / (√3- 1 )
= 50 (√3+ 1 ) / (√3 - 1 ) ( √3 + 1 ) (∵Rationalising the denominator )
= 50( √3 + 1 ) / ( √3)² - ( 1 )²
= 50 (√3 + 1 ) / 3 - 1
= 50 (√3 + 1 ) / 2
= 25 (√3 + 1 )
= 25√3 + 25
= 25 ( 1.73 ) + 25
= 43.25 + 25
= 68.25 m.
∴BO = AC = x = 68.25 m.
Hence, distance between building and tower= AC = 68.25 m.
∴Height of the tower = DC = DO + AC = 68.25 m + ( x + 50 / √3 ) m.
= 68.25 m + ( 68.25 + 50 / √3 ) m
= 68.25 m + ( 118 / √3 ) m
= 68.25 m + ( 118 (√3 ) / (√3)² )
= 68.25 m + ( 118 × 1.73 / 3 )
= 68.25 m + ( 204.14 / 3)
= 68.25 m + 68.04 m
= 136.29 m.
Let the height of the building = AB = OC = 50 m. And
height of the tower = DC = ( DO + OC ) = x m.
Distance between tower and building = AC = BO
Angle of depression to the top of building =∠EDB = 45°
Angle of depression to bottom of building = ∠EDA = 60°
In right angle ΔDBO,
tan θ = DO / BO
tan 45° = x / BO
1 = x / BO
BO = x m.
In right angle ΔDAC,
tanθ = DC / AC
tan 60° = ( DO + OC ) / AC
√3 = ( x + 50 )/ AC
AC = ( x + 50 ) / √3
We know that BO = AC
∴ x = (x + 50) / √3
⇒√3x = x + 50
⇒√3x - x = 50
⇒ x ( √3 - 1 ) = 50
⇒ x = 50 / (√3- 1 )
= 50 (√3+ 1 ) / (√3 - 1 ) ( √3 + 1 ) (∵Rationalising the denominator )
= 50( √3 + 1 ) / ( √3)² - ( 1 )²
= 50 (√3 + 1 ) / 3 - 1
= 50 (√3 + 1 ) / 2
= 25 (√3 + 1 )
= 25√3 + 25
= 25 ( 1.73 ) + 25
= 43.25 + 25
= 68.25 m.
∴BO = AC = x = 68.25 m.
Hence, distance between building and tower= AC = 68.25 m.
∴Height of the tower = DC = DO + AC = 68.25 m + ( x + 50 / √3 ) m.
= 68.25 m + ( 68.25 + 50 / √3 ) m
= 68.25 m + ( 118 / √3 ) m
= 68.25 m + ( 118 (√3 ) / (√3)² )
= 68.25 m + ( 118 × 1.73 / 3 )
= 68.25 m + ( 204.14 / 3)
= 68.25 m + 68.04 m
= 136.29 m.