Math, asked by ramankpr47, 3 months ago

what is the answer of this definite integral​

Attachments:

Answers

Answered by senboni123456
0

Step-by-step explanation:

We have,

 \int \limits ^{1}_{ \frac{1}{3} } \frac{(x -  {x}^{3} )^{ \frac{1}{3} }}{ {x}^{4} } dx \\

  = \int \limits ^{1}_{ \frac{1}{3} } \frac{x(x ^{ - 2} - 1)^{ \frac{1}{3} }}{ {x}^{4} } dx \\

  = \int \limits ^{1}_{ \frac{1}{3} } (x ^{ - 2} - 1)^{ \frac{1}{3} }  {x}^{ - 3} dx \\

Let \:  \:  {x}^{ - 2}   - 1 =  {t}^{3} \\   \implies - 2 {x}^{ - 3} dx = 3 {t}^{2} dt

  = \int \limits ^{0}_{ -  \frac{2}{ \sqrt[3]{9} } }t .( -  \frac{3}{2}) {t}^{2} dt \\

  =  -  \frac{3}{2} \int \limits ^{0}_{ -  \frac{2}{ \sqrt[3]{9} } } {t}^{3} dt \\

 =  -  \frac{3}{8} ( {t}^{4} )^{0} _{ -  \frac{2}{ \sqrt[3]{9} } }

Similar questions