Math, asked by mapazeer, 1 month ago

-
what is the answer of this question ​

Attachments:

Answers

Answered by senboni123456
1

Step-by-step explanation:

We have,

 \int \frac{1}{ {x}^{3} }  \sqrt{ \frac{ {x}^{2}  - 1}{ {x}^{2} } } dx \\

 =  \int \frac{1}{ {x}^{3} }  \sqrt{1 -  \frac{1}{ {x}^{2} } } dx \\

Let \: 1 -  \frac{1}{ {x}^{2} }  = t \\  \implies \frac{2}{ {x}^{3} } dx = dt

 =  \int  \frac{ \sqrt{t }}{2} dt\\

 =   \frac{1}{2} \int  \sqrt{t } .dt\\

 =   \frac{1}{2}  . \frac{2 {t}^{ \frac{3}{2} } }{3}  + c\\

 =   \frac{1}{3}   {t}^{ \frac{3}{2} }   + c\\

 =   \frac{1}{3}   {(1 - \frac{1}{ {x}^{2} }  )}^{ \frac{3}{2} }   + c\\

 =   \frac{1}{3 {x}^{3} }   {( {x}^{2} - 1 )}^{ \frac{3}{2} }   + c\\

Similar questions