Math, asked by dastapankumar459, 4 months ago

what is the answer to (2²⁰ ÷ 2¹⁵)​

Answers

Answered by CloseEncounter
8

Step by step explanation

 \sf{ = ( {2}^{20}  \div  {2}^{15} )}

\sf{ = ( {2}^{20 - 15} )}

\sf{ = ( {2}^{5} )}

\sf{ = 32}

Laws of exponents

\sf {a}^{m} \times  {a}^{n}  =  {a}^{m + n}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf {a}^{m}  \div   {a}^{n}  =   {a}^{m  -  n} \\  \sf{( {a}^{m} ) ^{n} =  {a}^{mn} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: a {}^{m}  \times  {n}^{m}  = (ab) ^{m}   } \\   \sf{a}^{0}  = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:   {\frac{ {a}^{m} }{ {b}^{m} }=  \left( \frac{a}{b} \right) ^{m} }

Answered by Anonymous
1

 \sf \pmb{Answer :}

 \sf{ = ( {2}^{20}  \div  {2}^{15} )}

\sf{ = ( {2}^{20 - 15} )}

\sf{ = ( {2}^{5} )}

\sf{ = 32}

Laws of exponents

\sf {a}^{m} \times  {a}^{n}  =  {a}^{m + n}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf {a}^{m}  \div   {a}^{n}  =   {a}^{m  -  n} \\  \sf{( {a}^{m} ) ^{n} =  {a}^{mn} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: a {}^{m}  \times  {n}^{m}  = (ab) ^{m}   } \\   \sf{a}^{0}  = 1 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:   {\frac{ {a}^{m} }{ {b}^{m} }=  \left( \frac{a}{b} \right) ^{m} }

Similar questions