Math, asked by Anonymous, 6 months ago

What is the answer to the question I have posted

Attachments:

Answers

Answered by RISH4BH
36

\large{\underline{\underline{\red{\tt{\purple{\leadsto } GiveN:-}}}}}

  • \sf sin ( A - B ) =  \dfrac{1}{2}

  • \sf cos ( A + B ) =  \dfrac{1}{2}

  • \sf 0° < ( A + B ) < 90° .

\large{\underline{\underline{\red{\tt{\purple{\leadsto } To\:FinD:-}}}}}

  • \sf The\: value\:of\:A.
  • \sf The\: value\:of\:B.

\large{\underline{\underline{\red{\tt{\purple{\leadsto } AnsweR:-}}}}}

\underline{\green{\sf\orange{\mapsto} According\:to\: first\: Condition:-}}

\tt:\implies sin(A-B)=\dfrac{1}{2}

\tt:\implies sin(A-B)=sin30^{\circ}

\underline{\boxed{\blue{\tt{\longmapsto A-B=30^{\circ}}}}}

__________________________________

\underline{\green{\sf\orange{\mapsto} According\:to\: second\: Condition:-}}

\tt:\implies cos(A+B)=\dfrac{1}{2}

\tt:\implies cos(A+B)=sin60^{\circ}

\underline{\boxed{\blue{\tt{\longmapsto A+B=60^{\circ}}}}}

__________________________________

\tt \green{ \orange{\mapsto}Add\:these\:two\: equation}

\tt:\implies A-B + ( A + B) = 30^{\circ}+60^{\circ}

\tt:\implies A +\cancel B + A \cancel - B = 90^{\circ}

\tt:\implies 2A = 90^{\circ}

\tt:\implies A=\bigg\lgroup\dfrac{90^{\circ}}{2}\bigg\rgroup

\underline{\boxed{\red{\tt{\longmapsto A=45^{\circ}}}}}

___________________________________

\tt\green{\orange{\mapsto} Put\: this\:value\:in\:(i):-}

\tt:\implies A - B = 30^{\circ}

\tt:\implies 45^{\circ} - B = 30^{\circ}

\tt:\implies B = (45 -30)^{\circ}

\underline{\boxed{\red{\tt{\longmapsto B=15^{\circ}}}}}

\boxed{\green{\pink{\dag}\bf Hence\:value\:of\:A\:is\:45^{\circ}\&\:B\:is\:15^{\circ}.}}

_____________________________________

\large{\underline{\underline{\red{\tt{\purple{\leadsto } More\:To\: Know:-}}}}}

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 65^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Similar questions