What is the area, in square units, of a triangle with vertices at (-1,-1.)( 3, -1)and (2, 2)
Answers
Solution :-
Let,
Points of the vertices of the triangle be A ( -1 , -1 ), B ( 3 , -1 ) and C ( 2 , 2 ).
Here,
Area of triangle ABC :-
Area of triangle ABC = 6 sq.units
Answer:
Solution :-
Let,
Points of the vertices of the triangle be A ( -1 , -1 ), B ( 3 , -1 ) and C ( 2 , 2 ).
\bf Area \ of \ triangle = \dfrac{1}{2} \times [ \ x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2) \ ]Area of triangle=
2
1
×[ x
1
(y
2
−y
3
)+x
2
(y
3
−y
1
)+x
3
(y
1
−y
2
) ]
Here,
\begin{gathered}\bullet\sf \ x_1= -1 \ , \ y_1 = -1 \\\\\bullet \ x_2 = 3 \ , \ y_2 = -1 \\\\\bullet \ x_3 = 2 \ , \ y_3 = 2\end{gathered}
∙ x
1
=−1 , y
1
=−1
∙ x
2
=3 , y
2
=−1
∙ x
3
=2 , y
3
=2
Area of triangle ABC :-
\begin{gathered}\longrightarrow \sf \dfrac{1}{2} \times [ \ -1(-1-2)+3(2-(-1))+2(-1-(-1) \ ] \\\\\longrightarrow \dfrac{1}{2} \times [ \ -1(-1-2)+3(2+1)+2(-1+1) \ ] \\\\\longrightarrow \dfrac{1}{2} \times [ \ (-1 \times - 3)+( 3 \times 3 ) +( 2 \times 0 ) \ ] \\\\\longrightarrow \dfrac{1}{2} \times [ \ 3+9+0) \ ] \\\\\longrightarrow \dfrac{1}{2} \times 12 \\\\\longrightarrow 6 \ sq.units\end{gathered}
⟶
2
1
×[ −1(−1−2)+3(2−(−1))+2(−1−(−1) ]
⟶
2
1
×[ −1(−1−2)+3(2+1)+2(−1+1) ]
⟶
2
1
×[ (−1×−3)+(3×3)+(2×0) ]
⟶
2
1
×[ 3+9+0) ]
⟶
2
1
×12
⟶6 sq.units
hope it helps you