Math, asked by christochris120, 11 months ago

What is the area of a circle of
diameter 50 cm? *​

Answers

Answered by Anonymous
6

Given :

  • Diameter of circle = 50 cm.

To find :

  • Area of circle .

Solution :

  • Diameter = 50 cm.

We know,

{\boxed{\bold{Radius=\dfrac{Diameter}{2}}}}

So,

\sf{Radius=\dfrac{50}{2}\:cm}

\implies\sf{Radius(r)=25\:cm}

We know,

{\boxed{\bold{Area\: of\: circle=\pi\:r^2}}}

\sf{Area\: of\: the\: circle=\frac{22}{7}\times\:25\times\:25\:cm^2}

\implies\sf{Area\: of\: the\: circle=1962.5\:cm^2}

Therefore, area of the circle is 1962.5 cm².

_______________________

More information :-

  • Diameter of circle = 2r
  • Circumference of circle = 2πr
  • Circumference of semicircle = πr.
  • Area of semicircle = πr²/2

_______________________

Answered by Anonymous
3

Question :

  • What is the area of a circle of diameter 50 cm?

Answer :

Let the area of circle = x

Diameter of circle = 50 cm

{\boxed{\green{\sf{Diameter \: of \: circle = \: \frac{Radius}{2}}}}}

Radius = \sf\frac{\cancel{50}}{\cancel{2}}{\boxed{\green{\sf{Area\: of \: circle = \: \pi\r^2}}}}

\sf\frac{22}{7}\:×25\:×25

  • Hence, by cancelling the numbers, we get 1962.5

:\implies{\underline{\boxed{\green{\sf{Answer \: is \: 1962.5}}}}}

Similar questions