What is the area of a right angle triangle with its hypotenuse and perimeter equal to x and y respectively?
Answers
Answered by
8
Here's your answer :--
®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®
Let ABC be the right triangle.
Given, AC = x and perimeter of ΔABC = y
Perimeter of ΔABC = AB + BC + CA = y
∴ AB + BC + x = y
⇒ AB + BC = y – x
Squaring on both sides, we get
αв^2 + вc^2 + 2 × AB × BC = ( y – x)^2 ...(1)
In right ΔABC,
αв^2 + вc^2 = cα^2 = х^2 ...(2)
From (1) and (2), we get
х^2 + 2 × AB × BC = (y – x)^2
⇒ 2 × AB × BC = ч^2 + х^2 – 2xy – х^2 = ч^2 – 2xy
(ín thє fírѕt αttαchmєnt)
Area of ΔABC = × AB × BC
∴ Area of ΔABC = (Using(3))
(ín thє ѕєcσnd αttαchmєnt)
hσpє ít hєlpѕ!
(thєrє αrє 3 αttαchmєntѕ pσѕtєd...ѕσ kíndlч hαvє α lσσk αt αll σf 'єm)
ⓑⓔ ⓑⓡⓐⓘⓝⓛⓨ✌
®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®
Let ABC be the right triangle.
Given, AC = x and perimeter of ΔABC = y
Perimeter of ΔABC = AB + BC + CA = y
∴ AB + BC + x = y
⇒ AB + BC = y – x
Squaring on both sides, we get
αв^2 + вc^2 + 2 × AB × BC = ( y – x)^2 ...(1)
In right ΔABC,
αв^2 + вc^2 = cα^2 = х^2 ...(2)
From (1) and (2), we get
х^2 + 2 × AB × BC = (y – x)^2
⇒ 2 × AB × BC = ч^2 + х^2 – 2xy – х^2 = ч^2 – 2xy
(ín thє fírѕt αttαchmєnt)
Area of ΔABC = × AB × BC
∴ Area of ΔABC = (Using(3))
(ín thє ѕєcσnd αttαchmєnt)
hσpє ít hєlpѕ!
(thєrє αrє 3 αttαchmєntѕ pσѕtєd...ѕσ kíndlч hαvє α lσσk αt αll σf 'єm)
ⓑⓔ ⓑⓡⓐⓘⓝⓛⓨ✌
Attachments:
Sherry26:
Excellently Explained!
Similar questions