Math, asked by itzkritika013, 3 months ago

what is the area of a sector of angle P ( in degree) of a circle with radius R cm. ( class 10 )

plz solve it...​

Answers

Answered by BrainlyRish
7

Given : Angle of Sector is P⁰and Radius of circle is R .

Need To Find : Area of Sector .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Formula for Finding area of the Sector is given by :

\frak {\underline {\dag As, \:We\:know\:that\;:}}\\

\qquad \qquad \underline {\boxed {\sf{ \bigstar Area\:of\:Sector \:_{(Circle)} = \dfrac{\theta}{360\degree} \times \pi r^{2}}}}\\

Where ,

  • \theta is angle of Sector of the circle and r is the Radius of Circle .

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \qquad :\implies \sf{  Area\:of\:Sector \:_{(Circle)} = \dfrac{p\degree}{360\degree} \times \pi R^{2}}\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {Area\:of\:Sector \:_{(Circle)} = \dfrac{p\degree}{360\degree} \times \pi R^{2}  }}}}\:\bf{\bigstar}\\

Or ,

[ In M.C.Q we don't have any option like that .]

So In this case ,

  • Multiply Both Numerator and Denominator by 2 .

\qquad \qquad :\implies \sf{  Area\:of\:Sector \:_{(Circle)} = \dfrac{p\degree}{360\degree} \times \pi R^{2}\times \dfrac{2}{2}}\\

\qquad \qquad :\implies \sf{  Area\:of\:Sector \:_{(Circle)} = \dfrac{p\degree}{720\degree} \times 2\pi R^{2} }\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {Area\:of\:Sector \:_{(Circle)} = \dfrac{p\degree}{720\degree} \times 2\pi R^{2}  }}}}\:\bf{\bigstar}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm { Area\:of\:Sector \:_{(Circle)} =\bf{ \dfrac{p\degree}{720\degree} \times 2\pi R^{2}  }}}}\\

Or,

⠀⠀⠀⠀⠀\underline{ \mathrm { \bf{Area \:of\:sector\:_{(Circle)} = \dfrac{p\degree}{360\degree} \times \pi R^{2}  }}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions