Math, asked by ashutoshnwarake, 9 months ago

What is the area of equilateral triangle whose side is √3/2 cm

Answers

Answered by ButterFliee
8

GIVEN:

  • Side of an equilateral triangle = √3/2 cm

TO FIND:

  • What is the area of an equilateral triangle ?

SOLUTION:

We have given that, the side of an equilateral triangle is √3/2 cm

We have to find the area of an equilateral triangle

We know that, the formula for finding the area of an equilateral triangle is:-

❮ AREA = \bf{\dfrac{\sqrt{3}}{4} a^2} ❯ 

According to question:-

A = \sf{\dfrac{\sqrt{3}}{4} \times \bigg( \dfrac{\sqrt{3}}{2} \bigg)^2}

A = \sf{\dfrac{\sqrt{3}}{4} \times \dfrac{3}{4}}

A = \bf{\dfrac{3 \sqrt{3}}{16} \: cm^2} ❯ 

Hence, the area of an equilateral triangle is 33/16 cm²

______________________

Answered by ItsTogepi
44

\huge\underline\mathfrak\red{Given}

  • Side of a equilateral triangle= \frac{ \sqrt{3} }{2} cm

\huge\underline\mathfrak\red{To \: find}

  • The area of equilateral triangle.

\huge\underline\mathfrak\red{Formula \: used}

  • \sf{Area =  \frac{ \sqrt{3} }{4}  {a}^{2} }

\huge\underline\mathfrak\red{Solution}

We know the formula of Equilateral triangle,

\sf{Area =  \frac{ \sqrt{3} }{4}  {a}^{2} }

Now by putting the value in the formula,we get,

\sf{Area =  \frac{ \sqrt{3} }{4}  \times ( \frac{ \sqrt{3} }{2}) ^{2} cm }

\sf{\implies Area =  \frac{ \sqrt{3} }{4}  \times  \frac{3}{4}cm }

\sf{\implies Area =  \frac{3 \sqrt{3} }{16}cm^{2} }

\rule{300}{2}

\sf{Hence \: , \: the \: area \: of \: the \: equilateral} \\ \sf{triangle \: is \:  \frac{3 \sqrt{3} }{16}cm^{2} \:  }whose \: side \: is \:  \frac{ \sqrt{3} }{2} cm

\huge\underline\mathfrak\red{ThankYou}

Similar questions