Math, asked by Sekharu, 10 months ago

What is the area of the colored square?

Attachments:

Answers

Answered by nisithsahu69
131

Answer:

Step-by-step explanation:

Area of each triangle = 1/2 × 5 × 15 = 37.5

Area of 4 triangles = 4 × 37.5 = 150 units

Area of the square = 15 × 15 = 225 units

Area of the coloured square = 225 - 150 = 75 units

Answered by shahrukhgraveiens
1

Area of square = (side)²

We have to find a length of any square side .

For annotations see  attached figure.

So, In Δ ABC

          ∠ ABC = 90°

          AC = 15

          BC = 5

          If ∠BAC = Ф

          then tan Ф = \frac{BC}{AC}

          tan Ф = \frac{1}{3} , sin Ф = \frac{1}{\sqrt{10} } and cos Ф = \frac{3}{\sqrt{10} }

         

          Now in Δ DEC, (DE drawn parallel to AB)

          ∠ DEC = 90°

          DC = 10

          ∠ CDE = ∠ BAC = Ф

           So, cos Ф = \frac{DE}{DC}

                   \frac{3}{\sqrt{10} } = \frac{DE}{10}

              DE = 3\sqrt{10}

But DE = GF = 3\sqrt{10}

Area of square = (3\sqrt{10}

Area of square = 90 sq. unit.

#SPJ2

           

         

Attachments:
Similar questions