Math, asked by rahul95041kumar, 1 month ago

What is the area of the triangle ABC with sides a =10 cm, c =4 cm and angle B =30 degree?
a) 16cm^2
6) 12cm²
c) l0cm²
d) 8 cm^2​

Answers

Answered by ladlym01
0

Answer:

Step-by-step explanation:

there is a formula which is

area of triangle = 1/2absin theta

so we put all values in this formula

  = 1/2 *10*4*sin 30

 = 1/2*40*1/2

  =10 cm

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

In triangle ABC, a = 10 cm, c = 4 cm and ∠B = 30°

Let us drop a perpendicular from vertex A on line BC intersecting BC at D.

Now, In triangle ABD

\rm :\longmapsto\:sin30 \degree \:  =  \: \dfrac{AD}{AB}

\rm :\longmapsto\:\dfrac{1}{2}  \:  =  \: \dfrac{AD}{4}

\rm :\longmapsto\:\dfrac{4}{2}  \:  =  \:AD

\bf\implies \:AD = 2 \: cm

Now,

\rm :\longmapsto\:Area_{\triangle ABC} = \dfrac{1}{2}  \times AD \times a

\rm :\longmapsto\:Area_{\triangle ABC} = \dfrac{1}{2}  \times 2 \times 10

\bf :\longmapsto\:Area_{\triangle ABC} =  10 \:  {cm}^{2}

Hence,

  • Option (c) is correct

Remark :-

\red{ \boxed{ \sf{ \:Area_{\triangle ABC} =  \frac{1}{2}absinC}}}

\red{ \boxed{ \sf{ \:Area_{\triangle ABC} =  \frac{1}{2}bcsinA}}}

\red{ \boxed{ \sf{ \:Area_{\triangle ABC} =  \frac{1}{2}casinB}}}

Additional Information :-

\red{ \boxed{ \sf{  \frac{a}{sinA}  =  \frac{b}{sinB}  =  \frac{c}{sinC} = k }}}

\red{ \boxed{ \sf{ \:cosA =  \frac{ {b}^{2} +  {c}^{2} -  {a}^{2}   }{2bc}}}}

\red{ \boxed{ \sf{ \:cosB =  \frac{ {c}^{2} +  {a}^{2} -  {b}^{2}   }{2ca}}}}

\red{ \boxed{ \sf{ \:cosC =  \frac{ {a}^{2} +  {b}^{2} -  {c}^{2}   }{2ab}}}}

Attachments:
Similar questions