Math, asked by rohittojo, 11 months ago

what is the argument of (2- 2i)?​

Answers

Answered by Manulal857
8

Answer:

HEY Buddy here's ur answer

The argument of -2 -2i is either the negative angle from the positive real axis clockwise to the radial line, or the positive angle from the positive real axis counterclockwise to the radial line.

Answered by Anonymous
29

\huge{\underline{\underline{\mathtt{\purple{To\:Find}}}}}

{\mathtt{Argument\: of \: 2 \: - \: 2i}}

\huge{\underline{\underline{\mathtt{\purple{Solution}}}}}

{\mathtt{Let \:Z\: = \:2 \:- \:2i }}

{\mathtt{And\: Let \: \alpha \: be\: the\: acute \: angle }}

{\mathtt{Where\: \alpha\:  is\: given \: by \: \implies }}

{ \mathtt {\tan( \alpha )  \:  =  \:  | \frac{ {Im(z)} }{Re(z)} | }}

{\mathtt{Now\: let \: us \: find \: the \: value\: of\: tan \: \alpha}}

  \mathtt{\implies \:  \tan( \alpha )  \:  =  \:   | \frac{ - 2}{2} |  = 1 }\\

  \mathtt{\implies \:  ( \alpha )  \:  =  \:  \frac{\pi}{4} }

{\mathtt{Now\: from\: here \:we \:observed\: from \:the\: number \:that }}

 \mathtt{Re(z) \:  >  \: 0 \: and \: Im(z) \:  < \: 0}

{\mathtt{ So \:the \:point\: representing \:z\: lies \:in \:the \:fourth \:quadrant}}

  \implies \: \mathtt{If \: point \: belongs \: to \: 4th\: quadrant \: then \: arg(z) \:  =   \: (   - \: \alpha}  \\

{ \mathtt{ \red { \: arg \: (z) \:  =  \: (\: - \:  \frac{\pi}{4}) \: = \: -\:\frac{\pi}{4}\:}}}

{\mathtt{Some \: Questions \: for \: self \: practice }}

⇝ 1 + i√3

⇝ 2√3 - 2i

⇝-√3 - i

{\mathtt{Important\: points }}

⇝ If point is in first quadrant then argument is equals to alpha .

⇝ If point belongs to second quadrant then argument is equals π - alpha

⇝If point belongs to 3rd quadrant then argument is equals to -( π - alpha )

Similar questions