Math, asked by senthil6284, 5 hours ago

what is the argument of the complex number z = (- i - 1)/i ​

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\:z = \dfrac{ - 1 - i}{i}

So, Let we first reduce this complex number to standard form.

So, on rationalizing, we get

\rm :\longmapsto\:z = \dfrac{ - 1 - i}{i} \times \dfrac{i}{i}

\rm :\longmapsto\:z = \dfrac{ - i -  {i}^{2} }{ {i}^{2} }

\rm :\longmapsto\:z = \dfrac{ - i -  ( - 1) }{  - 1}

\rm\implies \:z =  - 1 + i

Let assume that

\rm :\longmapsto\: - 1 + i = r(cos\theta  + isin \theta )

can be rewritten as

\rm :\longmapsto\: - 1 + i = rcos\theta  + i \: rsin \theta

So, on comparing real and Imaginary parts, we get

\rm :\longmapsto\:rcos\theta  =  - 1 -  -  -  - (1)

and

\rm :\longmapsto\:rsin\theta  = 1 -  -  - (2)

On squaring equation (1) and (2) and adding, we get

\rm :\longmapsto\: {(rcos\theta )}^{2}  +  {(rsin \theta )}^{2}  = 1 + 1

\rm :\longmapsto\: {r}^{2}( {cos}^{2}\theta  +  {sin }^{2}\theta ) = 2

\rm :\longmapsto\: {r}^{2}  = 2

\rm\implies \:r =  \sqrt{2}

So, on substituting the values of r in equation (1) and (2), we get

\rm :\longmapsto\:cos\theta  =  - \dfrac{1}{ \sqrt{2} }

and

\rm :\longmapsto\:sin \theta  =  \dfrac{1}{ \sqrt{2} }

Since, sin is positive and cos is negative.

\bf\implies \:\theta  = \pi - \dfrac{\pi}{4}  = \dfrac{3\pi}{4}

So,

\bf\implies \:arg(z)= \dfrac{3\pi}{4}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Argument of complex number using Short Cut Method

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \1sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Similar questions